MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odadd1 Structured version   Visualization version   GIF version

Theorem odadd1 18167
Description: The order of a product in an abelian group divides the LCM of the orders of the factors. (Contributed by Mario Carneiro, 20-Oct-2015.)
Hypotheses
Ref Expression
odadd1.1 𝑂 = (od‘𝐺)
odadd1.2 𝑋 = (Base‘𝐺)
odadd1.3 + = (+g𝐺)
Assertion
Ref Expression
odadd1 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) ∥ ((𝑂𝐴) · (𝑂𝐵)))

Proof of Theorem odadd1
StepHypRef Expression
1 ablgrp 18114 . . . . . . . . 9 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
2 odadd1.2 . . . . . . . . . 10 𝑋 = (Base‘𝐺)
3 odadd1.3 . . . . . . . . . 10 + = (+g𝐺)
42, 3grpcl 17346 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝐵𝑋) → (𝐴 + 𝐵) ∈ 𝑋)
51, 4syl3an1 1356 . . . . . . . 8 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → (𝐴 + 𝐵) ∈ 𝑋)
6 odadd1.1 . . . . . . . . 9 𝑂 = (od‘𝐺)
72, 6odcl 17871 . . . . . . . 8 ((𝐴 + 𝐵) ∈ 𝑋 → (𝑂‘(𝐴 + 𝐵)) ∈ ℕ0)
85, 7syl 17 . . . . . . 7 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → (𝑂‘(𝐴 + 𝐵)) ∈ ℕ0)
98nn0zd 11424 . . . . . 6 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → (𝑂‘(𝐴 + 𝐵)) ∈ ℤ)
102, 6odcl 17871 . . . . . . . . . 10 (𝐴𝑋 → (𝑂𝐴) ∈ ℕ0)
11103ad2ant2 1081 . . . . . . . . 9 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → (𝑂𝐴) ∈ ℕ0)
1211nn0zd 11424 . . . . . . . 8 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → (𝑂𝐴) ∈ ℤ)
132, 6odcl 17871 . . . . . . . . . 10 (𝐵𝑋 → (𝑂𝐵) ∈ ℕ0)
14133ad2ant3 1082 . . . . . . . . 9 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → (𝑂𝐵) ∈ ℕ0)
1514nn0zd 11424 . . . . . . . 8 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → (𝑂𝐵) ∈ ℤ)
1612, 15gcdcld 15149 . . . . . . 7 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → ((𝑂𝐴) gcd (𝑂𝐵)) ∈ ℕ0)
1716nn0zd 11424 . . . . . 6 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → ((𝑂𝐴) gcd (𝑂𝐵)) ∈ ℤ)
189, 17zmulcld 11432 . . . . 5 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ)
1918adantr 481 . . . 4 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 0) → ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ)
20 dvds0 14916 . . . 4 (((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ → ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) ∥ 0)
2119, 20syl 17 . . 3 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 0) → ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) ∥ 0)
22 gcdeq0 15157 . . . . . 6 (((𝑂𝐴) ∈ ℤ ∧ (𝑂𝐵) ∈ ℤ) → (((𝑂𝐴) gcd (𝑂𝐵)) = 0 ↔ ((𝑂𝐴) = 0 ∧ (𝑂𝐵) = 0)))
2312, 15, 22syl2anc 692 . . . . 5 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → (((𝑂𝐴) gcd (𝑂𝐵)) = 0 ↔ ((𝑂𝐴) = 0 ∧ (𝑂𝐵) = 0)))
2423biimpa 501 . . . 4 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 0) → ((𝑂𝐴) = 0 ∧ (𝑂𝐵) = 0))
25 oveq12 6614 . . . . 5 (((𝑂𝐴) = 0 ∧ (𝑂𝐵) = 0) → ((𝑂𝐴) · (𝑂𝐵)) = (0 · 0))
26 0cn 9977 . . . . . 6 0 ∈ ℂ
2726mul01i 10171 . . . . 5 (0 · 0) = 0
2825, 27syl6eq 2676 . . . 4 (((𝑂𝐴) = 0 ∧ (𝑂𝐵) = 0) → ((𝑂𝐴) · (𝑂𝐵)) = 0)
2924, 28syl 17 . . 3 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 0) → ((𝑂𝐴) · (𝑂𝐵)) = 0)
3021, 29breqtrrd 4646 . 2 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 0) → ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) ∥ ((𝑂𝐴) · (𝑂𝐵)))
31 simpl1 1062 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → 𝐺 ∈ Abel)
3212adantr 481 . . . . . . . . . . 11 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐴) ∈ ℤ)
3315adantr 481 . . . . . . . . . . 11 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐵) ∈ ℤ)
34 gcddvds 15144 . . . . . . . . . . 11 (((𝑂𝐴) ∈ ℤ ∧ (𝑂𝐵) ∈ ℤ) → (((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐴) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐵)))
3532, 33, 34syl2anc 692 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐴) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐵)))
3635simpld 475 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐴))
3717adantr 481 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) gcd (𝑂𝐵)) ∈ ℤ)
38 dvdsmultr1 14938 . . . . . . . . . 10 ((((𝑂𝐴) gcd (𝑂𝐵)) ∈ ℤ ∧ (𝑂𝐴) ∈ ℤ ∧ (𝑂𝐵) ∈ ℤ) → (((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐴) → ((𝑂𝐴) gcd (𝑂𝐵)) ∥ ((𝑂𝐴) · (𝑂𝐵))))
3937, 32, 33, 38syl3anc 1323 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐴) → ((𝑂𝐴) gcd (𝑂𝐵)) ∥ ((𝑂𝐴) · (𝑂𝐵))))
4036, 39mpd 15 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) gcd (𝑂𝐵)) ∥ ((𝑂𝐴) · (𝑂𝐵)))
41 simpr 477 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0)
4232, 33zmulcld 11432 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) · (𝑂𝐵)) ∈ ℤ)
43 dvdsval2 14905 . . . . . . . . 9 ((((𝑂𝐴) gcd (𝑂𝐵)) ∈ ℤ ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0 ∧ ((𝑂𝐴) · (𝑂𝐵)) ∈ ℤ) → (((𝑂𝐴) gcd (𝑂𝐵)) ∥ ((𝑂𝐴) · (𝑂𝐵)) ↔ (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ))
4437, 41, 42, 43syl3anc 1323 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) gcd (𝑂𝐵)) ∥ ((𝑂𝐴) · (𝑂𝐵)) ↔ (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ))
4540, 44mpbid 222 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ)
46 simpl2 1063 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → 𝐴𝑋)
47 simpl3 1064 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → 𝐵𝑋)
48 eqid 2626 . . . . . . . 8 (.g𝐺) = (.g𝐺)
492, 48, 3mulgdi 18148 . . . . . . 7 ((𝐺 ∈ Abel ∧ ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ ∧ 𝐴𝑋𝐵𝑋)) → ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))(.g𝐺)(𝐴 + 𝐵)) = (((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))(.g𝐺)𝐴) + ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))(.g𝐺)𝐵)))
5031, 45, 46, 47, 49syl13anc 1325 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))(.g𝐺)(𝐴 + 𝐵)) = (((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))(.g𝐺)𝐴) + ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))(.g𝐺)𝐵)))
5135simprd 479 . . . . . . . . . . . 12 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐵))
52 dvdsval2 14905 . . . . . . . . . . . . 13 ((((𝑂𝐴) gcd (𝑂𝐵)) ∈ ℤ ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0 ∧ (𝑂𝐵) ∈ ℤ) → (((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐵) ↔ ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ))
5337, 41, 33, 52syl3anc 1323 . . . . . . . . . . . 12 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐵) ↔ ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ))
5451, 53mpbid 222 . . . . . . . . . . 11 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ)
55 dvdsmul1 14922 . . . . . . . . . . 11 (((𝑂𝐴) ∈ ℤ ∧ ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ) → (𝑂𝐴) ∥ ((𝑂𝐴) · ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))))
5632, 54, 55syl2anc 692 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐴) ∥ ((𝑂𝐴) · ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))))
5732zcnd 11427 . . . . . . . . . . 11 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐴) ∈ ℂ)
5833zcnd 11427 . . . . . . . . . . 11 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐵) ∈ ℂ)
5937zcnd 11427 . . . . . . . . . . 11 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) gcd (𝑂𝐵)) ∈ ℂ)
6057, 58, 59, 41divassd 10781 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) = ((𝑂𝐴) · ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))))
6156, 60breqtrrd 4646 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐴) ∥ (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))))
6231, 1syl 17 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → 𝐺 ∈ Grp)
63 eqid 2626 . . . . . . . . . . 11 (0g𝐺) = (0g𝐺)
642, 6, 48, 63oddvds 17882 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ) → ((𝑂𝐴) ∥ (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) ↔ ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))(.g𝐺)𝐴) = (0g𝐺)))
6562, 46, 45, 64syl3anc 1323 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) ∥ (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) ↔ ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))(.g𝐺)𝐴) = (0g𝐺)))
6661, 65mpbid 222 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))(.g𝐺)𝐴) = (0g𝐺))
67 dvdsval2 14905 . . . . . . . . . . . . 13 ((((𝑂𝐴) gcd (𝑂𝐵)) ∈ ℤ ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0 ∧ (𝑂𝐴) ∈ ℤ) → (((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐴) ↔ ((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ))
6837, 41, 32, 67syl3anc 1323 . . . . . . . . . . . 12 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐴) ↔ ((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ))
6936, 68mpbid 222 . . . . . . . . . . 11 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ)
70 dvdsmul1 14922 . . . . . . . . . . 11 (((𝑂𝐵) ∈ ℤ ∧ ((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ) → (𝑂𝐵) ∥ ((𝑂𝐵) · ((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵)))))
7133, 69, 70syl2anc 692 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐵) ∥ ((𝑂𝐵) · ((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵)))))
7257, 58mulcomd 10006 . . . . . . . . . . . 12 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) · (𝑂𝐵)) = ((𝑂𝐵) · (𝑂𝐴)))
7372oveq1d 6620 . . . . . . . . . . 11 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) = (((𝑂𝐵) · (𝑂𝐴)) / ((𝑂𝐴) gcd (𝑂𝐵))))
7458, 57, 59, 41divassd 10781 . . . . . . . . . . 11 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐵) · (𝑂𝐴)) / ((𝑂𝐴) gcd (𝑂𝐵))) = ((𝑂𝐵) · ((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵)))))
7573, 74eqtrd 2660 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) = ((𝑂𝐵) · ((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵)))))
7671, 75breqtrrd 4646 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐵) ∥ (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))))
772, 6, 48, 63oddvds 17882 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝐵𝑋 ∧ (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ) → ((𝑂𝐵) ∥ (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) ↔ ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))(.g𝐺)𝐵) = (0g𝐺)))
7862, 47, 45, 77syl3anc 1323 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐵) ∥ (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) ↔ ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))(.g𝐺)𝐵) = (0g𝐺)))
7976, 78mpbid 222 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))(.g𝐺)𝐵) = (0g𝐺))
8066, 79oveq12d 6623 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))(.g𝐺)𝐴) + ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))(.g𝐺)𝐵)) = ((0g𝐺) + (0g𝐺)))
812, 63grpidcl 17366 . . . . . . . . 9 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝑋)
8262, 81syl 17 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (0g𝐺) ∈ 𝑋)
832, 3, 63grplid 17368 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (0g𝐺) ∈ 𝑋) → ((0g𝐺) + (0g𝐺)) = (0g𝐺))
8462, 82, 83syl2anc 692 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((0g𝐺) + (0g𝐺)) = (0g𝐺))
8580, 84eqtrd 2660 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))(.g𝐺)𝐴) + ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))(.g𝐺)𝐵)) = (0g𝐺))
8650, 85eqtrd 2660 . . . . 5 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))(.g𝐺)(𝐴 + 𝐵)) = (0g𝐺))
875adantr 481 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝐴 + 𝐵) ∈ 𝑋)
882, 6, 48, 63oddvds 17882 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝐴 + 𝐵) ∈ 𝑋 ∧ (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ) → ((𝑂‘(𝐴 + 𝐵)) ∥ (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) ↔ ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))(.g𝐺)(𝐴 + 𝐵)) = (0g𝐺)))
8962, 87, 45, 88syl3anc 1323 . . . . 5 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂‘(𝐴 + 𝐵)) ∥ (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) ↔ ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))(.g𝐺)(𝐴 + 𝐵)) = (0g𝐺)))
9086, 89mpbird 247 . . . 4 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂‘(𝐴 + 𝐵)) ∥ (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))))
919adantr 481 . . . . 5 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂‘(𝐴 + 𝐵)) ∈ ℤ)
92 dvdsmulcr 14930 . . . . 5 (((𝑂‘(𝐴 + 𝐵)) ∈ ℤ ∧ (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ ∧ (((𝑂𝐴) gcd (𝑂𝐵)) ∈ ℤ ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0)) → (((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) ∥ ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵))) ↔ (𝑂‘(𝐴 + 𝐵)) ∥ (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))))
9391, 45, 37, 41, 92syl112anc 1327 . . . 4 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) ∥ ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵))) ↔ (𝑂‘(𝐴 + 𝐵)) ∥ (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))))
9490, 93mpbird 247 . . 3 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) ∥ ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵))))
9542zcnd 11427 . . . 4 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) · (𝑂𝐵)) ∈ ℂ)
9695, 59, 41divcan1d 10747 . . 3 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵))) = ((𝑂𝐴) · (𝑂𝐵)))
9794, 96breqtrd 4644 . 2 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) ∥ ((𝑂𝐴) · (𝑂𝐵)))
9830, 97pm2.61dane 2883 1 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) ∥ ((𝑂𝐴) · (𝑂𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1992  wne 2796   class class class wbr 4618  cfv 5850  (class class class)co 6605  0cc0 9881   · cmul 9886   / cdiv 10629  0cn0 11237  cz 11322  cdvds 14902   gcd cgcd 15135  Basecbs 15776  +gcplusg 15857  0gc0g 16016  Grpcgrp 17338  .gcmg 17456  odcod 17860  Abelcabl 18110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-inf2 8483  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958  ax-pre-sup 9959
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-1st 7116  df-2nd 7117  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-er 7688  df-en 7901  df-dom 7902  df-sdom 7903  df-sup 8293  df-inf 8294  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-div 10630  df-nn 10966  df-2 11024  df-3 11025  df-n0 11238  df-z 11323  df-uz 11632  df-rp 11777  df-fz 12266  df-fzo 12404  df-fl 12530  df-mod 12606  df-seq 12739  df-exp 12798  df-cj 13768  df-re 13769  df-im 13770  df-sqrt 13904  df-abs 13905  df-dvds 14903  df-gcd 15136  df-0g 16018  df-mgm 17158  df-sgrp 17200  df-mnd 17211  df-grp 17341  df-minusg 17342  df-sbg 17343  df-mulg 17457  df-od 17864  df-cmn 18111  df-abl 18112
This theorem is referenced by:  odadd  18169  torsubg  18173
  Copyright terms: Public domain W3C validator