MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odadd1 Structured version   Visualization version   GIF version

Theorem odadd1 18967
Description: The order of a product in an abelian group divides the LCM of the orders of the factors. (Contributed by Mario Carneiro, 20-Oct-2015.)
Hypotheses
Ref Expression
odadd1.1 𝑂 = (od‘𝐺)
odadd1.2 𝑋 = (Base‘𝐺)
odadd1.3 + = (+g𝐺)
Assertion
Ref Expression
odadd1 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) ∥ ((𝑂𝐴) · (𝑂𝐵)))

Proof of Theorem odadd1
StepHypRef Expression
1 ablgrp 18910 . . . . . . . . 9 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
2 odadd1.2 . . . . . . . . . 10 𝑋 = (Base‘𝐺)
3 odadd1.3 . . . . . . . . . 10 + = (+g𝐺)
42, 3grpcl 18110 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝐵𝑋) → (𝐴 + 𝐵) ∈ 𝑋)
51, 4syl3an1 1159 . . . . . . . 8 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → (𝐴 + 𝐵) ∈ 𝑋)
6 odadd1.1 . . . . . . . . 9 𝑂 = (od‘𝐺)
72, 6odcl 18663 . . . . . . . 8 ((𝐴 + 𝐵) ∈ 𝑋 → (𝑂‘(𝐴 + 𝐵)) ∈ ℕ0)
85, 7syl 17 . . . . . . 7 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → (𝑂‘(𝐴 + 𝐵)) ∈ ℕ0)
98nn0zd 12084 . . . . . 6 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → (𝑂‘(𝐴 + 𝐵)) ∈ ℤ)
102, 6odcl 18663 . . . . . . . . . 10 (𝐴𝑋 → (𝑂𝐴) ∈ ℕ0)
11103ad2ant2 1130 . . . . . . . . 9 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → (𝑂𝐴) ∈ ℕ0)
1211nn0zd 12084 . . . . . . . 8 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → (𝑂𝐴) ∈ ℤ)
132, 6odcl 18663 . . . . . . . . . 10 (𝐵𝑋 → (𝑂𝐵) ∈ ℕ0)
14133ad2ant3 1131 . . . . . . . . 9 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → (𝑂𝐵) ∈ ℕ0)
1514nn0zd 12084 . . . . . . . 8 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → (𝑂𝐵) ∈ ℤ)
1612, 15gcdcld 15856 . . . . . . 7 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → ((𝑂𝐴) gcd (𝑂𝐵)) ∈ ℕ0)
1716nn0zd 12084 . . . . . 6 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → ((𝑂𝐴) gcd (𝑂𝐵)) ∈ ℤ)
189, 17zmulcld 12092 . . . . 5 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ)
1918adantr 483 . . . 4 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 0) → ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ)
20 dvds0 15624 . . . 4 (((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ → ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) ∥ 0)
2119, 20syl 17 . . 3 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 0) → ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) ∥ 0)
22 gcdeq0 15864 . . . . . 6 (((𝑂𝐴) ∈ ℤ ∧ (𝑂𝐵) ∈ ℤ) → (((𝑂𝐴) gcd (𝑂𝐵)) = 0 ↔ ((𝑂𝐴) = 0 ∧ (𝑂𝐵) = 0)))
2312, 15, 22syl2anc 586 . . . . 5 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → (((𝑂𝐴) gcd (𝑂𝐵)) = 0 ↔ ((𝑂𝐴) = 0 ∧ (𝑂𝐵) = 0)))
2423biimpa 479 . . . 4 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 0) → ((𝑂𝐴) = 0 ∧ (𝑂𝐵) = 0))
25 oveq12 7164 . . . . 5 (((𝑂𝐴) = 0 ∧ (𝑂𝐵) = 0) → ((𝑂𝐴) · (𝑂𝐵)) = (0 · 0))
26 0cn 10632 . . . . . 6 0 ∈ ℂ
2726mul01i 10829 . . . . 5 (0 · 0) = 0
2825, 27syl6eq 2872 . . . 4 (((𝑂𝐴) = 0 ∧ (𝑂𝐵) = 0) → ((𝑂𝐴) · (𝑂𝐵)) = 0)
2924, 28syl 17 . . 3 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 0) → ((𝑂𝐴) · (𝑂𝐵)) = 0)
3021, 29breqtrrd 5093 . 2 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 0) → ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) ∥ ((𝑂𝐴) · (𝑂𝐵)))
31 simpl1 1187 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → 𝐺 ∈ Abel)
3217adantr 483 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) gcd (𝑂𝐵)) ∈ ℤ)
3312adantr 483 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐴) ∈ ℤ)
3415adantr 483 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐵) ∈ ℤ)
35 gcddvds 15851 . . . . . . . . . . 11 (((𝑂𝐴) ∈ ℤ ∧ (𝑂𝐵) ∈ ℤ) → (((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐴) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐵)))
3633, 34, 35syl2anc 586 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐴) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐵)))
3736simpld 497 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐴))
3832, 33, 34, 37dvdsmultr1d 15647 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) gcd (𝑂𝐵)) ∥ ((𝑂𝐴) · (𝑂𝐵)))
39 simpr 487 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0)
4033, 34zmulcld 12092 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) · (𝑂𝐵)) ∈ ℤ)
41 dvdsval2 15609 . . . . . . . . 9 ((((𝑂𝐴) gcd (𝑂𝐵)) ∈ ℤ ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0 ∧ ((𝑂𝐴) · (𝑂𝐵)) ∈ ℤ) → (((𝑂𝐴) gcd (𝑂𝐵)) ∥ ((𝑂𝐴) · (𝑂𝐵)) ↔ (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ))
4232, 39, 40, 41syl3anc 1367 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) gcd (𝑂𝐵)) ∥ ((𝑂𝐴) · (𝑂𝐵)) ↔ (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ))
4338, 42mpbid 234 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ)
44 simpl2 1188 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → 𝐴𝑋)
45 simpl3 1189 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → 𝐵𝑋)
46 eqid 2821 . . . . . . . 8 (.g𝐺) = (.g𝐺)
472, 46, 3mulgdi 18946 . . . . . . 7 ((𝐺 ∈ Abel ∧ ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ ∧ 𝐴𝑋𝐵𝑋)) → ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))(.g𝐺)(𝐴 + 𝐵)) = (((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))(.g𝐺)𝐴) + ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))(.g𝐺)𝐵)))
4831, 43, 44, 45, 47syl13anc 1368 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))(.g𝐺)(𝐴 + 𝐵)) = (((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))(.g𝐺)𝐴) + ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))(.g𝐺)𝐵)))
4936simprd 498 . . . . . . . . . . 11 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐵))
50 dvdsval2 15609 . . . . . . . . . . . 12 ((((𝑂𝐴) gcd (𝑂𝐵)) ∈ ℤ ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0 ∧ (𝑂𝐵) ∈ ℤ) → (((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐵) ↔ ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ))
5132, 39, 34, 50syl3anc 1367 . . . . . . . . . . 11 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐵) ↔ ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ))
5249, 51mpbid 234 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ)
53 dvdsmul1 15630 . . . . . . . . . 10 (((𝑂𝐴) ∈ ℤ ∧ ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ) → (𝑂𝐴) ∥ ((𝑂𝐴) · ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))))
5433, 52, 53syl2anc 586 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐴) ∥ ((𝑂𝐴) · ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))))
5533zcnd 12087 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐴) ∈ ℂ)
5634zcnd 12087 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐵) ∈ ℂ)
5732zcnd 12087 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) gcd (𝑂𝐵)) ∈ ℂ)
5855, 56, 57, 39divassd 11450 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) = ((𝑂𝐴) · ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))))
5954, 58breqtrrd 5093 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐴) ∥ (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))))
6031, 1syl 17 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → 𝐺 ∈ Grp)
61 eqid 2821 . . . . . . . . . 10 (0g𝐺) = (0g𝐺)
622, 6, 46, 61oddvds 18674 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ) → ((𝑂𝐴) ∥ (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) ↔ ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))(.g𝐺)𝐴) = (0g𝐺)))
6360, 44, 43, 62syl3anc 1367 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) ∥ (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) ↔ ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))(.g𝐺)𝐴) = (0g𝐺)))
6459, 63mpbid 234 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))(.g𝐺)𝐴) = (0g𝐺))
65 dvdsval2 15609 . . . . . . . . . . . 12 ((((𝑂𝐴) gcd (𝑂𝐵)) ∈ ℤ ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0 ∧ (𝑂𝐴) ∈ ℤ) → (((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐴) ↔ ((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ))
6632, 39, 33, 65syl3anc 1367 . . . . . . . . . . 11 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐴) ↔ ((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ))
6737, 66mpbid 234 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ)
68 dvdsmul1 15630 . . . . . . . . . 10 (((𝑂𝐵) ∈ ℤ ∧ ((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ) → (𝑂𝐵) ∥ ((𝑂𝐵) · ((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵)))))
6934, 67, 68syl2anc 586 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐵) ∥ ((𝑂𝐵) · ((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵)))))
7055, 56mulcomd 10661 . . . . . . . . . . 11 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) · (𝑂𝐵)) = ((𝑂𝐵) · (𝑂𝐴)))
7170oveq1d 7170 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) = (((𝑂𝐵) · (𝑂𝐴)) / ((𝑂𝐴) gcd (𝑂𝐵))))
7256, 55, 57, 39divassd 11450 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐵) · (𝑂𝐴)) / ((𝑂𝐴) gcd (𝑂𝐵))) = ((𝑂𝐵) · ((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵)))))
7371, 72eqtrd 2856 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) = ((𝑂𝐵) · ((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵)))))
7469, 73breqtrrd 5093 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐵) ∥ (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))))
752, 6, 46, 61oddvds 18674 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝐵𝑋 ∧ (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ) → ((𝑂𝐵) ∥ (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) ↔ ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))(.g𝐺)𝐵) = (0g𝐺)))
7660, 45, 43, 75syl3anc 1367 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐵) ∥ (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) ↔ ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))(.g𝐺)𝐵) = (0g𝐺)))
7774, 76mpbid 234 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))(.g𝐺)𝐵) = (0g𝐺))
7864, 77oveq12d 7173 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))(.g𝐺)𝐴) + ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))(.g𝐺)𝐵)) = ((0g𝐺) + (0g𝐺)))
792, 61grpidcl 18130 . . . . . . 7 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝑋)
802, 3, 61grplid 18132 . . . . . . 7 ((𝐺 ∈ Grp ∧ (0g𝐺) ∈ 𝑋) → ((0g𝐺) + (0g𝐺)) = (0g𝐺))
8160, 79, 80syl2anc2 587 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((0g𝐺) + (0g𝐺)) = (0g𝐺))
8248, 78, 813eqtrd 2860 . . . . 5 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))(.g𝐺)(𝐴 + 𝐵)) = (0g𝐺))
835adantr 483 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝐴 + 𝐵) ∈ 𝑋)
842, 6, 46, 61oddvds 18674 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝐴 + 𝐵) ∈ 𝑋 ∧ (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ) → ((𝑂‘(𝐴 + 𝐵)) ∥ (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) ↔ ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))(.g𝐺)(𝐴 + 𝐵)) = (0g𝐺)))
8560, 83, 43, 84syl3anc 1367 . . . . 5 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂‘(𝐴 + 𝐵)) ∥ (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) ↔ ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))(.g𝐺)(𝐴 + 𝐵)) = (0g𝐺)))
8682, 85mpbird 259 . . . 4 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂‘(𝐴 + 𝐵)) ∥ (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))))
879adantr 483 . . . . 5 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂‘(𝐴 + 𝐵)) ∈ ℤ)
88 dvdsmulcr 15638 . . . . 5 (((𝑂‘(𝐴 + 𝐵)) ∈ ℤ ∧ (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ ∧ (((𝑂𝐴) gcd (𝑂𝐵)) ∈ ℤ ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0)) → (((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) ∥ ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵))) ↔ (𝑂‘(𝐴 + 𝐵)) ∥ (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))))
8987, 43, 32, 39, 88syl112anc 1370 . . . 4 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) ∥ ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵))) ↔ (𝑂‘(𝐴 + 𝐵)) ∥ (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))))
9086, 89mpbird 259 . . 3 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) ∥ ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵))))
9140zcnd 12087 . . . 4 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) · (𝑂𝐵)) ∈ ℂ)
9291, 57, 39divcan1d 11416 . . 3 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵))) = ((𝑂𝐴) · (𝑂𝐵)))
9390, 92breqtrd 5091 . 2 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) ∥ ((𝑂𝐴) · (𝑂𝐵)))
9430, 93pm2.61dane 3104 1 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) ∥ ((𝑂𝐴) · (𝑂𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wne 3016   class class class wbr 5065  cfv 6354  (class class class)co 7155  0cc0 10536   · cmul 10541   / cdiv 11296  0cn0 11896  cz 11980  cdvds 15606   gcd cgcd 15842  Basecbs 16482  +gcplusg 16564  0gc0g 16712  Grpcgrp 18102  .gcmg 18223  odcod 18651  Abelcabl 18906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-sup 8905  df-inf 8906  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-3 11700  df-n0 11897  df-z 11981  df-uz 12243  df-rp 12389  df-fz 12892  df-fzo 13033  df-fl 13161  df-mod 13237  df-seq 13369  df-exp 13429  df-cj 14457  df-re 14458  df-im 14459  df-sqrt 14593  df-abs 14594  df-dvds 15607  df-gcd 15843  df-0g 16714  df-mgm 17851  df-sgrp 17900  df-mnd 17911  df-grp 18105  df-minusg 18106  df-sbg 18107  df-mulg 18224  df-od 18655  df-cmn 18907  df-abl 18908
This theorem is referenced by:  odadd  18969  torsubg  18973
  Copyright terms: Public domain W3C validator