MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odadd1 Structured version   Visualization version   GIF version

Theorem odadd1 18297
Description: The order of a product in an abelian group divides the LCM of the orders of the factors. (Contributed by Mario Carneiro, 20-Oct-2015.)
Hypotheses
Ref Expression
odadd1.1 𝑂 = (od‘𝐺)
odadd1.2 𝑋 = (Base‘𝐺)
odadd1.3 + = (+g𝐺)
Assertion
Ref Expression
odadd1 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) ∥ ((𝑂𝐴) · (𝑂𝐵)))

Proof of Theorem odadd1
StepHypRef Expression
1 ablgrp 18244 . . . . . . . . 9 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
2 odadd1.2 . . . . . . . . . 10 𝑋 = (Base‘𝐺)
3 odadd1.3 . . . . . . . . . 10 + = (+g𝐺)
42, 3grpcl 17477 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝐵𝑋) → (𝐴 + 𝐵) ∈ 𝑋)
51, 4syl3an1 1399 . . . . . . . 8 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → (𝐴 + 𝐵) ∈ 𝑋)
6 odadd1.1 . . . . . . . . 9 𝑂 = (od‘𝐺)
72, 6odcl 18001 . . . . . . . 8 ((𝐴 + 𝐵) ∈ 𝑋 → (𝑂‘(𝐴 + 𝐵)) ∈ ℕ0)
85, 7syl 17 . . . . . . 7 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → (𝑂‘(𝐴 + 𝐵)) ∈ ℕ0)
98nn0zd 11518 . . . . . 6 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → (𝑂‘(𝐴 + 𝐵)) ∈ ℤ)
102, 6odcl 18001 . . . . . . . . . 10 (𝐴𝑋 → (𝑂𝐴) ∈ ℕ0)
11103ad2ant2 1103 . . . . . . . . 9 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → (𝑂𝐴) ∈ ℕ0)
1211nn0zd 11518 . . . . . . . 8 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → (𝑂𝐴) ∈ ℤ)
132, 6odcl 18001 . . . . . . . . . 10 (𝐵𝑋 → (𝑂𝐵) ∈ ℕ0)
14133ad2ant3 1104 . . . . . . . . 9 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → (𝑂𝐵) ∈ ℕ0)
1514nn0zd 11518 . . . . . . . 8 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → (𝑂𝐵) ∈ ℤ)
1612, 15gcdcld 15277 . . . . . . 7 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → ((𝑂𝐴) gcd (𝑂𝐵)) ∈ ℕ0)
1716nn0zd 11518 . . . . . 6 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → ((𝑂𝐴) gcd (𝑂𝐵)) ∈ ℤ)
189, 17zmulcld 11526 . . . . 5 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ)
1918adantr 480 . . . 4 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 0) → ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ)
20 dvds0 15044 . . . 4 (((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ → ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) ∥ 0)
2119, 20syl 17 . . 3 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 0) → ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) ∥ 0)
22 gcdeq0 15285 . . . . . 6 (((𝑂𝐴) ∈ ℤ ∧ (𝑂𝐵) ∈ ℤ) → (((𝑂𝐴) gcd (𝑂𝐵)) = 0 ↔ ((𝑂𝐴) = 0 ∧ (𝑂𝐵) = 0)))
2312, 15, 22syl2anc 694 . . . . 5 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → (((𝑂𝐴) gcd (𝑂𝐵)) = 0 ↔ ((𝑂𝐴) = 0 ∧ (𝑂𝐵) = 0)))
2423biimpa 500 . . . 4 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 0) → ((𝑂𝐴) = 0 ∧ (𝑂𝐵) = 0))
25 oveq12 6699 . . . . 5 (((𝑂𝐴) = 0 ∧ (𝑂𝐵) = 0) → ((𝑂𝐴) · (𝑂𝐵)) = (0 · 0))
26 0cn 10070 . . . . . 6 0 ∈ ℂ
2726mul01i 10264 . . . . 5 (0 · 0) = 0
2825, 27syl6eq 2701 . . . 4 (((𝑂𝐴) = 0 ∧ (𝑂𝐵) = 0) → ((𝑂𝐴) · (𝑂𝐵)) = 0)
2924, 28syl 17 . . 3 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 0) → ((𝑂𝐴) · (𝑂𝐵)) = 0)
3021, 29breqtrrd 4713 . 2 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 0) → ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) ∥ ((𝑂𝐴) · (𝑂𝐵)))
31 simpl1 1084 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → 𝐺 ∈ Abel)
3212adantr 480 . . . . . . . . . . 11 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐴) ∈ ℤ)
3315adantr 480 . . . . . . . . . . 11 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐵) ∈ ℤ)
34 gcddvds 15272 . . . . . . . . . . 11 (((𝑂𝐴) ∈ ℤ ∧ (𝑂𝐵) ∈ ℤ) → (((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐴) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐵)))
3532, 33, 34syl2anc 694 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐴) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐵)))
3635simpld 474 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐴))
3717adantr 480 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) gcd (𝑂𝐵)) ∈ ℤ)
38 dvdsmultr1 15066 . . . . . . . . . 10 ((((𝑂𝐴) gcd (𝑂𝐵)) ∈ ℤ ∧ (𝑂𝐴) ∈ ℤ ∧ (𝑂𝐵) ∈ ℤ) → (((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐴) → ((𝑂𝐴) gcd (𝑂𝐵)) ∥ ((𝑂𝐴) · (𝑂𝐵))))
3937, 32, 33, 38syl3anc 1366 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐴) → ((𝑂𝐴) gcd (𝑂𝐵)) ∥ ((𝑂𝐴) · (𝑂𝐵))))
4036, 39mpd 15 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) gcd (𝑂𝐵)) ∥ ((𝑂𝐴) · (𝑂𝐵)))
41 simpr 476 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0)
4232, 33zmulcld 11526 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) · (𝑂𝐵)) ∈ ℤ)
43 dvdsval2 15030 . . . . . . . . 9 ((((𝑂𝐴) gcd (𝑂𝐵)) ∈ ℤ ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0 ∧ ((𝑂𝐴) · (𝑂𝐵)) ∈ ℤ) → (((𝑂𝐴) gcd (𝑂𝐵)) ∥ ((𝑂𝐴) · (𝑂𝐵)) ↔ (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ))
4437, 41, 42, 43syl3anc 1366 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) gcd (𝑂𝐵)) ∥ ((𝑂𝐴) · (𝑂𝐵)) ↔ (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ))
4540, 44mpbid 222 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ)
46 simpl2 1085 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → 𝐴𝑋)
47 simpl3 1086 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → 𝐵𝑋)
48 eqid 2651 . . . . . . . 8 (.g𝐺) = (.g𝐺)
492, 48, 3mulgdi 18278 . . . . . . 7 ((𝐺 ∈ Abel ∧ ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ ∧ 𝐴𝑋𝐵𝑋)) → ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))(.g𝐺)(𝐴 + 𝐵)) = (((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))(.g𝐺)𝐴) + ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))(.g𝐺)𝐵)))
5031, 45, 46, 47, 49syl13anc 1368 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))(.g𝐺)(𝐴 + 𝐵)) = (((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))(.g𝐺)𝐴) + ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))(.g𝐺)𝐵)))
5135simprd 478 . . . . . . . . . . . 12 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐵))
52 dvdsval2 15030 . . . . . . . . . . . . 13 ((((𝑂𝐴) gcd (𝑂𝐵)) ∈ ℤ ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0 ∧ (𝑂𝐵) ∈ ℤ) → (((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐵) ↔ ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ))
5337, 41, 33, 52syl3anc 1366 . . . . . . . . . . . 12 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐵) ↔ ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ))
5451, 53mpbid 222 . . . . . . . . . . 11 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ)
55 dvdsmul1 15050 . . . . . . . . . . 11 (((𝑂𝐴) ∈ ℤ ∧ ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ) → (𝑂𝐴) ∥ ((𝑂𝐴) · ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))))
5632, 54, 55syl2anc 694 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐴) ∥ ((𝑂𝐴) · ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))))
5732zcnd 11521 . . . . . . . . . . 11 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐴) ∈ ℂ)
5833zcnd 11521 . . . . . . . . . . 11 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐵) ∈ ℂ)
5937zcnd 11521 . . . . . . . . . . 11 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) gcd (𝑂𝐵)) ∈ ℂ)
6057, 58, 59, 41divassd 10874 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) = ((𝑂𝐴) · ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))))
6156, 60breqtrrd 4713 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐴) ∥ (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))))
6231, 1syl 17 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → 𝐺 ∈ Grp)
63 eqid 2651 . . . . . . . . . . 11 (0g𝐺) = (0g𝐺)
642, 6, 48, 63oddvds 18012 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ) → ((𝑂𝐴) ∥ (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) ↔ ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))(.g𝐺)𝐴) = (0g𝐺)))
6562, 46, 45, 64syl3anc 1366 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) ∥ (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) ↔ ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))(.g𝐺)𝐴) = (0g𝐺)))
6661, 65mpbid 222 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))(.g𝐺)𝐴) = (0g𝐺))
67 dvdsval2 15030 . . . . . . . . . . . . 13 ((((𝑂𝐴) gcd (𝑂𝐵)) ∈ ℤ ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0 ∧ (𝑂𝐴) ∈ ℤ) → (((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐴) ↔ ((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ))
6837, 41, 32, 67syl3anc 1366 . . . . . . . . . . . 12 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐴) ↔ ((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ))
6936, 68mpbid 222 . . . . . . . . . . 11 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ)
70 dvdsmul1 15050 . . . . . . . . . . 11 (((𝑂𝐵) ∈ ℤ ∧ ((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ) → (𝑂𝐵) ∥ ((𝑂𝐵) · ((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵)))))
7133, 69, 70syl2anc 694 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐵) ∥ ((𝑂𝐵) · ((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵)))))
7257, 58mulcomd 10099 . . . . . . . . . . . 12 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) · (𝑂𝐵)) = ((𝑂𝐵) · (𝑂𝐴)))
7372oveq1d 6705 . . . . . . . . . . 11 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) = (((𝑂𝐵) · (𝑂𝐴)) / ((𝑂𝐴) gcd (𝑂𝐵))))
7458, 57, 59, 41divassd 10874 . . . . . . . . . . 11 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐵) · (𝑂𝐴)) / ((𝑂𝐴) gcd (𝑂𝐵))) = ((𝑂𝐵) · ((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵)))))
7573, 74eqtrd 2685 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) = ((𝑂𝐵) · ((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵)))))
7671, 75breqtrrd 4713 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐵) ∥ (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))))
772, 6, 48, 63oddvds 18012 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝐵𝑋 ∧ (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ) → ((𝑂𝐵) ∥ (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) ↔ ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))(.g𝐺)𝐵) = (0g𝐺)))
7862, 47, 45, 77syl3anc 1366 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐵) ∥ (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) ↔ ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))(.g𝐺)𝐵) = (0g𝐺)))
7976, 78mpbid 222 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))(.g𝐺)𝐵) = (0g𝐺))
8066, 79oveq12d 6708 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))(.g𝐺)𝐴) + ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))(.g𝐺)𝐵)) = ((0g𝐺) + (0g𝐺)))
812, 63grpidcl 17497 . . . . . . . . 9 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝑋)
8262, 81syl 17 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (0g𝐺) ∈ 𝑋)
832, 3, 63grplid 17499 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (0g𝐺) ∈ 𝑋) → ((0g𝐺) + (0g𝐺)) = (0g𝐺))
8462, 82, 83syl2anc 694 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((0g𝐺) + (0g𝐺)) = (0g𝐺))
8580, 84eqtrd 2685 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))(.g𝐺)𝐴) + ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))(.g𝐺)𝐵)) = (0g𝐺))
8650, 85eqtrd 2685 . . . . 5 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))(.g𝐺)(𝐴 + 𝐵)) = (0g𝐺))
875adantr 480 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝐴 + 𝐵) ∈ 𝑋)
882, 6, 48, 63oddvds 18012 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝐴 + 𝐵) ∈ 𝑋 ∧ (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ) → ((𝑂‘(𝐴 + 𝐵)) ∥ (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) ↔ ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))(.g𝐺)(𝐴 + 𝐵)) = (0g𝐺)))
8962, 87, 45, 88syl3anc 1366 . . . . 5 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂‘(𝐴 + 𝐵)) ∥ (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) ↔ ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))(.g𝐺)(𝐴 + 𝐵)) = (0g𝐺)))
9086, 89mpbird 247 . . . 4 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂‘(𝐴 + 𝐵)) ∥ (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))))
919adantr 480 . . . . 5 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂‘(𝐴 + 𝐵)) ∈ ℤ)
92 dvdsmulcr 15058 . . . . 5 (((𝑂‘(𝐴 + 𝐵)) ∈ ℤ ∧ (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ ∧ (((𝑂𝐴) gcd (𝑂𝐵)) ∈ ℤ ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0)) → (((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) ∥ ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵))) ↔ (𝑂‘(𝐴 + 𝐵)) ∥ (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))))
9391, 45, 37, 41, 92syl112anc 1370 . . . 4 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) ∥ ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵))) ↔ (𝑂‘(𝐴 + 𝐵)) ∥ (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))))
9490, 93mpbird 247 . . 3 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) ∥ ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵))))
9542zcnd 11521 . . . 4 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) · (𝑂𝐵)) ∈ ℂ)
9695, 59, 41divcan1d 10840 . . 3 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵))) = ((𝑂𝐴) · (𝑂𝐵)))
9794, 96breqtrd 4711 . 2 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) ∥ ((𝑂𝐴) · (𝑂𝐵)))
9830, 97pm2.61dane 2910 1 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) ∥ ((𝑂𝐴) · (𝑂𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823   class class class wbr 4685  cfv 5926  (class class class)co 6690  0cc0 9974   · cmul 9979   / cdiv 10722  0cn0 11330  cz 11415  cdvds 15027   gcd cgcd 15263  Basecbs 15904  +gcplusg 15988  0gc0g 16147  Grpcgrp 17469  .gcmg 17587  odcod 17990  Abelcabl 18240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-fz 12365  df-fzo 12505  df-fl 12633  df-mod 12709  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-dvds 15028  df-gcd 15264  df-0g 16149  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-grp 17472  df-minusg 17473  df-sbg 17474  df-mulg 17588  df-od 17994  df-cmn 18241  df-abl 18242
This theorem is referenced by:  odadd  18299  torsubg  18303
  Copyright terms: Public domain W3C validator