MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odcl Structured version   Visualization version   GIF version

Theorem odcl 18044
Description: The order of a group element is always a nonnegative integer. (Contributed by Mario Carneiro, 14-Jan-2015.) (Revised by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
odcl.1 𝑋 = (Base‘𝐺)
odcl.2 𝑂 = (od‘𝐺)
Assertion
Ref Expression
odcl (𝐴𝑋 → (𝑂𝐴) ∈ ℕ0)

Proof of Theorem odcl
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 odcl.1 . . . . 5 𝑋 = (Base‘𝐺)
2 eqid 2692 . . . . 5 (.g𝐺) = (.g𝐺)
3 eqid 2692 . . . . 5 (0g𝐺) = (0g𝐺)
4 odcl.2 . . . . 5 𝑂 = (od‘𝐺)
5 eqid 2692 . . . . 5 {𝑦 ∈ ℕ ∣ (𝑦(.g𝐺)𝐴) = (0g𝐺)} = {𝑦 ∈ ℕ ∣ (𝑦(.g𝐺)𝐴) = (0g𝐺)}
61, 2, 3, 4, 5odlem1 18043 . . . 4 (𝐴𝑋 → (((𝑂𝐴) = 0 ∧ {𝑦 ∈ ℕ ∣ (𝑦(.g𝐺)𝐴) = (0g𝐺)} = ∅) ∨ (𝑂𝐴) ∈ {𝑦 ∈ ℕ ∣ (𝑦(.g𝐺)𝐴) = (0g𝐺)}))
7 simpl 474 . . . . 5 (((𝑂𝐴) = 0 ∧ {𝑦 ∈ ℕ ∣ (𝑦(.g𝐺)𝐴) = (0g𝐺)} = ∅) → (𝑂𝐴) = 0)
8 elrabi 3432 . . . . 5 ((𝑂𝐴) ∈ {𝑦 ∈ ℕ ∣ (𝑦(.g𝐺)𝐴) = (0g𝐺)} → (𝑂𝐴) ∈ ℕ)
97, 8orim12i 539 . . . 4 ((((𝑂𝐴) = 0 ∧ {𝑦 ∈ ℕ ∣ (𝑦(.g𝐺)𝐴) = (0g𝐺)} = ∅) ∨ (𝑂𝐴) ∈ {𝑦 ∈ ℕ ∣ (𝑦(.g𝐺)𝐴) = (0g𝐺)}) → ((𝑂𝐴) = 0 ∨ (𝑂𝐴) ∈ ℕ))
106, 9syl 17 . . 3 (𝐴𝑋 → ((𝑂𝐴) = 0 ∨ (𝑂𝐴) ∈ ℕ))
1110orcomd 402 . 2 (𝐴𝑋 → ((𝑂𝐴) ∈ ℕ ∨ (𝑂𝐴) = 0))
12 elnn0 11375 . 2 ((𝑂𝐴) ∈ ℕ0 ↔ ((𝑂𝐴) ∈ ℕ ∨ (𝑂𝐴) = 0))
1311, 12sylibr 224 1 (𝐴𝑋 → (𝑂𝐴) ∈ ℕ0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 382  wa 383   = wceq 1564  wcel 2071  {crab 2986  c0 3991  cfv 5969  (class class class)co 6733  0cc0 10017  cn 11101  0cn0 11373  Basecbs 15948  0gc0g 16191  .gcmg 17630  odcod 18033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1818  ax-5 1920  ax-6 1986  ax-7 2022  ax-8 2073  ax-9 2080  ax-10 2100  ax-11 2115  ax-12 2128  ax-13 2323  ax-ext 2672  ax-rep 4847  ax-sep 4857  ax-nul 4865  ax-pow 4916  ax-pr 4979  ax-un 7034  ax-cnex 10073  ax-resscn 10074  ax-1cn 10075  ax-icn 10076  ax-addcl 10077  ax-addrcl 10078  ax-mulcl 10079  ax-mulrcl 10080  ax-mulcom 10081  ax-addass 10082  ax-mulass 10083  ax-distr 10084  ax-i2m1 10085  ax-1ne0 10086  ax-1rid 10087  ax-rnegex 10088  ax-rrecex 10089  ax-cnre 10090  ax-pre-lttri 10091  ax-pre-lttrn 10092  ax-pre-ltadd 10093  ax-pre-mulgt0 10094
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1567  df-ex 1786  df-nf 1791  df-sb 1979  df-eu 2543  df-mo 2544  df-clab 2679  df-cleq 2685  df-clel 2688  df-nfc 2823  df-ne 2865  df-nel 2968  df-ral 2987  df-rex 2988  df-reu 2989  df-rmo 2990  df-rab 2991  df-v 3274  df-sbc 3510  df-csb 3608  df-dif 3651  df-un 3653  df-in 3655  df-ss 3662  df-pss 3664  df-nul 3992  df-if 4163  df-pw 4236  df-sn 4254  df-pr 4256  df-tp 4258  df-op 4260  df-uni 4513  df-iun 4598  df-br 4729  df-opab 4789  df-mpt 4806  df-tr 4829  df-id 5096  df-eprel 5101  df-po 5107  df-so 5108  df-fr 5145  df-we 5147  df-xp 5192  df-rel 5193  df-cnv 5194  df-co 5195  df-dm 5196  df-rn 5197  df-res 5198  df-ima 5199  df-pred 5761  df-ord 5807  df-on 5808  df-lim 5809  df-suc 5810  df-iota 5932  df-fun 5971  df-fn 5972  df-f 5973  df-f1 5974  df-fo 5975  df-f1o 5976  df-fv 5977  df-riota 6694  df-ov 6736  df-oprab 6737  df-mpt2 6738  df-om 7151  df-wrecs 7495  df-recs 7556  df-rdg 7594  df-er 7830  df-en 8041  df-dom 8042  df-sdom 8043  df-sup 8432  df-inf 8433  df-pnf 10157  df-mnf 10158  df-xr 10159  df-ltxr 10160  df-le 10161  df-sub 10349  df-neg 10350  df-nn 11102  df-n0 11374  df-z 11459  df-uz 11769  df-od 18037
This theorem is referenced by:  odf  18045  mndodcongi  18051  oddvdsnn0  18052  oddvds  18055  odeq  18058  odval2  18059  odmulg2  18061  odmulg  18062  odmulgeq  18063  odbezout  18064  odinv  18067  odf1  18068  dfod2  18070  odcl2  18071  odhash2  18079  odhash3  18080  gexnnod  18092  odadd1  18340  odadd2  18341  odadd  18342  gexexlem  18344  gexex  18345  torsubg  18346  iscygodd  18379  lt6abl  18385  ablfacrp  18554  ablfac1b  18558  ablfac1eu  18561  pgpfac1lem2  18563  chrcl  19965
  Copyright terms: Public domain W3C validator