MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odcl Structured version   Visualization version   GIF version

Theorem odcl 17871
Description: The order of a group element is always a nonnegative integer. (Contributed by Mario Carneiro, 14-Jan-2015.) (Revised by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
odcl.1 𝑋 = (Base‘𝐺)
odcl.2 𝑂 = (od‘𝐺)
Assertion
Ref Expression
odcl (𝐴𝑋 → (𝑂𝐴) ∈ ℕ0)

Proof of Theorem odcl
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 odcl.1 . . . . 5 𝑋 = (Base‘𝐺)
2 eqid 2626 . . . . 5 (.g𝐺) = (.g𝐺)
3 eqid 2626 . . . . 5 (0g𝐺) = (0g𝐺)
4 odcl.2 . . . . 5 𝑂 = (od‘𝐺)
5 eqid 2626 . . . . 5 {𝑦 ∈ ℕ ∣ (𝑦(.g𝐺)𝐴) = (0g𝐺)} = {𝑦 ∈ ℕ ∣ (𝑦(.g𝐺)𝐴) = (0g𝐺)}
61, 2, 3, 4, 5odlem1 17870 . . . 4 (𝐴𝑋 → (((𝑂𝐴) = 0 ∧ {𝑦 ∈ ℕ ∣ (𝑦(.g𝐺)𝐴) = (0g𝐺)} = ∅) ∨ (𝑂𝐴) ∈ {𝑦 ∈ ℕ ∣ (𝑦(.g𝐺)𝐴) = (0g𝐺)}))
7 simpl 473 . . . . 5 (((𝑂𝐴) = 0 ∧ {𝑦 ∈ ℕ ∣ (𝑦(.g𝐺)𝐴) = (0g𝐺)} = ∅) → (𝑂𝐴) = 0)
8 elrabi 3347 . . . . 5 ((𝑂𝐴) ∈ {𝑦 ∈ ℕ ∣ (𝑦(.g𝐺)𝐴) = (0g𝐺)} → (𝑂𝐴) ∈ ℕ)
97, 8orim12i 538 . . . 4 ((((𝑂𝐴) = 0 ∧ {𝑦 ∈ ℕ ∣ (𝑦(.g𝐺)𝐴) = (0g𝐺)} = ∅) ∨ (𝑂𝐴) ∈ {𝑦 ∈ ℕ ∣ (𝑦(.g𝐺)𝐴) = (0g𝐺)}) → ((𝑂𝐴) = 0 ∨ (𝑂𝐴) ∈ ℕ))
106, 9syl 17 . . 3 (𝐴𝑋 → ((𝑂𝐴) = 0 ∨ (𝑂𝐴) ∈ ℕ))
1110orcomd 403 . 2 (𝐴𝑋 → ((𝑂𝐴) ∈ ℕ ∨ (𝑂𝐴) = 0))
12 elnn0 11239 . 2 ((𝑂𝐴) ∈ ℕ0 ↔ ((𝑂𝐴) ∈ ℕ ∨ (𝑂𝐴) = 0))
1311, 12sylibr 224 1 (𝐴𝑋 → (𝑂𝐴) ∈ ℕ0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 383  wa 384   = wceq 1480  wcel 1992  {crab 2916  c0 3896  cfv 5850  (class class class)co 6605  0cc0 9881  cn 10965  0cn0 11237  Basecbs 15776  0gc0g 16016  .gcmg 17456  odcod 17860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-er 7688  df-en 7901  df-dom 7902  df-sdom 7903  df-sup 8293  df-inf 8294  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-nn 10966  df-n0 11238  df-z 11323  df-uz 11632  df-od 17864
This theorem is referenced by:  odf  17872  mndodcongi  17878  oddvdsnn0  17879  oddvds  17882  odeq  17885  odval2  17886  odmulg2  17888  odmulg  17889  odmulgeq  17890  odbezout  17891  odinv  17894  odf1  17895  dfod2  17897  odcl2  17898  odhash2  17906  odhash3  17907  gexnnod  17919  odadd1  18167  odadd2  18168  odadd  18169  gexexlem  18171  gexex  18172  torsubg  18173  iscygodd  18206  lt6abl  18212  ablfacrp  18381  ablfac1b  18385  ablfac1eu  18388  pgpfac1lem2  18390  chrcl  19788
  Copyright terms: Public domain W3C validator