MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odd2np1lem Structured version   Visualization version   GIF version

Theorem odd2np1lem 15286
Description: Lemma for odd2np1 15287. (Contributed by Scott Fenton, 3-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
odd2np1lem (𝑁 ∈ ℕ0 → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁))
Distinct variable groups:   𝑘,𝑁   𝑛,𝑁

Proof of Theorem odd2np1lem
Dummy variables 𝑗 𝑚 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq2 2771 . . . 4 (𝑗 = 0 → (((2 · 𝑛) + 1) = 𝑗 ↔ ((2 · 𝑛) + 1) = 0))
21rexbidv 3190 . . 3 (𝑗 = 0 → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑗 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 0))
3 eqeq2 2771 . . . 4 (𝑗 = 0 → ((𝑘 · 2) = 𝑗 ↔ (𝑘 · 2) = 0))
43rexbidv 3190 . . 3 (𝑗 = 0 → (∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑗 ↔ ∃𝑘 ∈ ℤ (𝑘 · 2) = 0))
52, 4orbi12d 748 . 2 (𝑗 = 0 → ((∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑗 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑗) ↔ (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 0 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 0)))
6 eqeq2 2771 . . . . 5 (𝑗 = 𝑚 → (((2 · 𝑛) + 1) = 𝑗 ↔ ((2 · 𝑛) + 1) = 𝑚))
76rexbidv 3190 . . . 4 (𝑗 = 𝑚 → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑗 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑚))
8 oveq2 6822 . . . . . . 7 (𝑛 = 𝑥 → (2 · 𝑛) = (2 · 𝑥))
98oveq1d 6829 . . . . . 6 (𝑛 = 𝑥 → ((2 · 𝑛) + 1) = ((2 · 𝑥) + 1))
109eqeq1d 2762 . . . . 5 (𝑛 = 𝑥 → (((2 · 𝑛) + 1) = 𝑚 ↔ ((2 · 𝑥) + 1) = 𝑚))
1110cbvrexv 3311 . . . 4 (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑚 ↔ ∃𝑥 ∈ ℤ ((2 · 𝑥) + 1) = 𝑚)
127, 11syl6bb 276 . . 3 (𝑗 = 𝑚 → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑗 ↔ ∃𝑥 ∈ ℤ ((2 · 𝑥) + 1) = 𝑚))
13 eqeq2 2771 . . . . 5 (𝑗 = 𝑚 → ((𝑘 · 2) = 𝑗 ↔ (𝑘 · 2) = 𝑚))
1413rexbidv 3190 . . . 4 (𝑗 = 𝑚 → (∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑗 ↔ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑚))
15 oveq1 6821 . . . . . 6 (𝑘 = 𝑦 → (𝑘 · 2) = (𝑦 · 2))
1615eqeq1d 2762 . . . . 5 (𝑘 = 𝑦 → ((𝑘 · 2) = 𝑚 ↔ (𝑦 · 2) = 𝑚))
1716cbvrexv 3311 . . . 4 (∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑚 ↔ ∃𝑦 ∈ ℤ (𝑦 · 2) = 𝑚)
1814, 17syl6bb 276 . . 3 (𝑗 = 𝑚 → (∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑗 ↔ ∃𝑦 ∈ ℤ (𝑦 · 2) = 𝑚))
1912, 18orbi12d 748 . 2 (𝑗 = 𝑚 → ((∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑗 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑗) ↔ (∃𝑥 ∈ ℤ ((2 · 𝑥) + 1) = 𝑚 ∨ ∃𝑦 ∈ ℤ (𝑦 · 2) = 𝑚)))
20 eqeq2 2771 . . . 4 (𝑗 = (𝑚 + 1) → (((2 · 𝑛) + 1) = 𝑗 ↔ ((2 · 𝑛) + 1) = (𝑚 + 1)))
2120rexbidv 3190 . . 3 (𝑗 = (𝑚 + 1) → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑗 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = (𝑚 + 1)))
22 eqeq2 2771 . . . 4 (𝑗 = (𝑚 + 1) → ((𝑘 · 2) = 𝑗 ↔ (𝑘 · 2) = (𝑚 + 1)))
2322rexbidv 3190 . . 3 (𝑗 = (𝑚 + 1) → (∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑗 ↔ ∃𝑘 ∈ ℤ (𝑘 · 2) = (𝑚 + 1)))
2421, 23orbi12d 748 . 2 (𝑗 = (𝑚 + 1) → ((∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑗 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑗) ↔ (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = (𝑚 + 1) ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = (𝑚 + 1))))
25 eqeq2 2771 . . . 4 (𝑗 = 𝑁 → (((2 · 𝑛) + 1) = 𝑗 ↔ ((2 · 𝑛) + 1) = 𝑁))
2625rexbidv 3190 . . 3 (𝑗 = 𝑁 → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑗 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
27 eqeq2 2771 . . . 4 (𝑗 = 𝑁 → ((𝑘 · 2) = 𝑗 ↔ (𝑘 · 2) = 𝑁))
2827rexbidv 3190 . . 3 (𝑗 = 𝑁 → (∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑗 ↔ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁))
2926, 28orbi12d 748 . 2 (𝑗 = 𝑁 → ((∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑗 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑗) ↔ (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁)))
30 0z 11600 . . . 4 0 ∈ ℤ
31 2cn 11303 . . . . 5 2 ∈ ℂ
3231mul02i 10437 . . . 4 (0 · 2) = 0
33 oveq1 6821 . . . . . 6 (𝑘 = 0 → (𝑘 · 2) = (0 · 2))
3433eqeq1d 2762 . . . . 5 (𝑘 = 0 → ((𝑘 · 2) = 0 ↔ (0 · 2) = 0))
3534rspcev 3449 . . . 4 ((0 ∈ ℤ ∧ (0 · 2) = 0) → ∃𝑘 ∈ ℤ (𝑘 · 2) = 0)
3630, 32, 35mp2an 710 . . 3 𝑘 ∈ ℤ (𝑘 · 2) = 0
3736olci 405 . 2 (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 0 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 0)
38 orcom 401 . . 3 ((∃𝑥 ∈ ℤ ((2 · 𝑥) + 1) = 𝑚 ∨ ∃𝑦 ∈ ℤ (𝑦 · 2) = 𝑚) ↔ (∃𝑦 ∈ ℤ (𝑦 · 2) = 𝑚 ∨ ∃𝑥 ∈ ℤ ((2 · 𝑥) + 1) = 𝑚))
39 zcn 11594 . . . . . . . . 9 (𝑦 ∈ ℤ → 𝑦 ∈ ℂ)
40 mulcom 10234 . . . . . . . . 9 ((𝑦 ∈ ℂ ∧ 2 ∈ ℂ) → (𝑦 · 2) = (2 · 𝑦))
4139, 31, 40sylancl 697 . . . . . . . 8 (𝑦 ∈ ℤ → (𝑦 · 2) = (2 · 𝑦))
4241adantl 473 . . . . . . 7 ((𝑚 ∈ ℕ0𝑦 ∈ ℤ) → (𝑦 · 2) = (2 · 𝑦))
4342eqeq1d 2762 . . . . . 6 ((𝑚 ∈ ℕ0𝑦 ∈ ℤ) → ((𝑦 · 2) = 𝑚 ↔ (2 · 𝑦) = 𝑚))
44 eqid 2760 . . . . . . . . 9 ((2 · 𝑦) + 1) = ((2 · 𝑦) + 1)
45 oveq2 6822 . . . . . . . . . . . 12 (𝑛 = 𝑦 → (2 · 𝑛) = (2 · 𝑦))
4645oveq1d 6829 . . . . . . . . . . 11 (𝑛 = 𝑦 → ((2 · 𝑛) + 1) = ((2 · 𝑦) + 1))
4746eqeq1d 2762 . . . . . . . . . 10 (𝑛 = 𝑦 → (((2 · 𝑛) + 1) = ((2 · 𝑦) + 1) ↔ ((2 · 𝑦) + 1) = ((2 · 𝑦) + 1)))
4847rspcev 3449 . . . . . . . . 9 ((𝑦 ∈ ℤ ∧ ((2 · 𝑦) + 1) = ((2 · 𝑦) + 1)) → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = ((2 · 𝑦) + 1))
4944, 48mpan2 709 . . . . . . . 8 (𝑦 ∈ ℤ → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = ((2 · 𝑦) + 1))
50 oveq1 6821 . . . . . . . . . 10 ((2 · 𝑦) = 𝑚 → ((2 · 𝑦) + 1) = (𝑚 + 1))
5150eqeq2d 2770 . . . . . . . . 9 ((2 · 𝑦) = 𝑚 → (((2 · 𝑛) + 1) = ((2 · 𝑦) + 1) ↔ ((2 · 𝑛) + 1) = (𝑚 + 1)))
5251rexbidv 3190 . . . . . . . 8 ((2 · 𝑦) = 𝑚 → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = ((2 · 𝑦) + 1) ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = (𝑚 + 1)))
5349, 52syl5ibcom 235 . . . . . . 7 (𝑦 ∈ ℤ → ((2 · 𝑦) = 𝑚 → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = (𝑚 + 1)))
5453adantl 473 . . . . . 6 ((𝑚 ∈ ℕ0𝑦 ∈ ℤ) → ((2 · 𝑦) = 𝑚 → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = (𝑚 + 1)))
5543, 54sylbid 230 . . . . 5 ((𝑚 ∈ ℕ0𝑦 ∈ ℤ) → ((𝑦 · 2) = 𝑚 → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = (𝑚 + 1)))
5655rexlimdva 3169 . . . 4 (𝑚 ∈ ℕ0 → (∃𝑦 ∈ ℤ (𝑦 · 2) = 𝑚 → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = (𝑚 + 1)))
57 peano2z 11630 . . . . . . . 8 (𝑥 ∈ ℤ → (𝑥 + 1) ∈ ℤ)
5857adantl 473 . . . . . . 7 ((𝑚 ∈ ℕ0𝑥 ∈ ℤ) → (𝑥 + 1) ∈ ℤ)
59 zcn 11594 . . . . . . . . 9 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
60 mulcom 10234 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ 2 ∈ ℂ) → (𝑥 · 2) = (2 · 𝑥))
6131, 60mpan2 709 . . . . . . . . . . . 12 (𝑥 ∈ ℂ → (𝑥 · 2) = (2 · 𝑥))
6231mulid2i 10255 . . . . . . . . . . . . 13 (1 · 2) = 2
6362a1i 11 . . . . . . . . . . . 12 (𝑥 ∈ ℂ → (1 · 2) = 2)
6461, 63oveq12d 6832 . . . . . . . . . . 11 (𝑥 ∈ ℂ → ((𝑥 · 2) + (1 · 2)) = ((2 · 𝑥) + 2))
65 df-2 11291 . . . . . . . . . . . 12 2 = (1 + 1)
6665oveq2i 6825 . . . . . . . . . . 11 ((2 · 𝑥) + 2) = ((2 · 𝑥) + (1 + 1))
6764, 66syl6eq 2810 . . . . . . . . . 10 (𝑥 ∈ ℂ → ((𝑥 · 2) + (1 · 2)) = ((2 · 𝑥) + (1 + 1)))
68 ax-1cn 10206 . . . . . . . . . . 11 1 ∈ ℂ
69 adddir 10243 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ 1 ∈ ℂ ∧ 2 ∈ ℂ) → ((𝑥 + 1) · 2) = ((𝑥 · 2) + (1 · 2)))
7068, 31, 69mp3an23 1565 . . . . . . . . . 10 (𝑥 ∈ ℂ → ((𝑥 + 1) · 2) = ((𝑥 · 2) + (1 · 2)))
71 mulcl 10232 . . . . . . . . . . . 12 ((2 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (2 · 𝑥) ∈ ℂ)
7231, 71mpan 708 . . . . . . . . . . 11 (𝑥 ∈ ℂ → (2 · 𝑥) ∈ ℂ)
73 addass 10235 . . . . . . . . . . . 12 (((2 · 𝑥) ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ∈ ℂ) → (((2 · 𝑥) + 1) + 1) = ((2 · 𝑥) + (1 + 1)))
7468, 68, 73mp3an23 1565 . . . . . . . . . . 11 ((2 · 𝑥) ∈ ℂ → (((2 · 𝑥) + 1) + 1) = ((2 · 𝑥) + (1 + 1)))
7572, 74syl 17 . . . . . . . . . 10 (𝑥 ∈ ℂ → (((2 · 𝑥) + 1) + 1) = ((2 · 𝑥) + (1 + 1)))
7667, 70, 753eqtr4d 2804 . . . . . . . . 9 (𝑥 ∈ ℂ → ((𝑥 + 1) · 2) = (((2 · 𝑥) + 1) + 1))
7759, 76syl 17 . . . . . . . 8 (𝑥 ∈ ℤ → ((𝑥 + 1) · 2) = (((2 · 𝑥) + 1) + 1))
7877adantl 473 . . . . . . 7 ((𝑚 ∈ ℕ0𝑥 ∈ ℤ) → ((𝑥 + 1) · 2) = (((2 · 𝑥) + 1) + 1))
79 oveq1 6821 . . . . . . . . 9 (𝑘 = (𝑥 + 1) → (𝑘 · 2) = ((𝑥 + 1) · 2))
8079eqeq1d 2762 . . . . . . . 8 (𝑘 = (𝑥 + 1) → ((𝑘 · 2) = (((2 · 𝑥) + 1) + 1) ↔ ((𝑥 + 1) · 2) = (((2 · 𝑥) + 1) + 1)))
8180rspcev 3449 . . . . . . 7 (((𝑥 + 1) ∈ ℤ ∧ ((𝑥 + 1) · 2) = (((2 · 𝑥) + 1) + 1)) → ∃𝑘 ∈ ℤ (𝑘 · 2) = (((2 · 𝑥) + 1) + 1))
8258, 78, 81syl2anc 696 . . . . . 6 ((𝑚 ∈ ℕ0𝑥 ∈ ℤ) → ∃𝑘 ∈ ℤ (𝑘 · 2) = (((2 · 𝑥) + 1) + 1))
83 oveq1 6821 . . . . . . . 8 (((2 · 𝑥) + 1) = 𝑚 → (((2 · 𝑥) + 1) + 1) = (𝑚 + 1))
8483eqeq2d 2770 . . . . . . 7 (((2 · 𝑥) + 1) = 𝑚 → ((𝑘 · 2) = (((2 · 𝑥) + 1) + 1) ↔ (𝑘 · 2) = (𝑚 + 1)))
8584rexbidv 3190 . . . . . 6 (((2 · 𝑥) + 1) = 𝑚 → (∃𝑘 ∈ ℤ (𝑘 · 2) = (((2 · 𝑥) + 1) + 1) ↔ ∃𝑘 ∈ ℤ (𝑘 · 2) = (𝑚 + 1)))
8682, 85syl5ibcom 235 . . . . 5 ((𝑚 ∈ ℕ0𝑥 ∈ ℤ) → (((2 · 𝑥) + 1) = 𝑚 → ∃𝑘 ∈ ℤ (𝑘 · 2) = (𝑚 + 1)))
8786rexlimdva 3169 . . . 4 (𝑚 ∈ ℕ0 → (∃𝑥 ∈ ℤ ((2 · 𝑥) + 1) = 𝑚 → ∃𝑘 ∈ ℤ (𝑘 · 2) = (𝑚 + 1)))
8856, 87orim12d 919 . . 3 (𝑚 ∈ ℕ0 → ((∃𝑦 ∈ ℤ (𝑦 · 2) = 𝑚 ∨ ∃𝑥 ∈ ℤ ((2 · 𝑥) + 1) = 𝑚) → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = (𝑚 + 1) ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = (𝑚 + 1))))
8938, 88syl5bi 232 . 2 (𝑚 ∈ ℕ0 → ((∃𝑥 ∈ ℤ ((2 · 𝑥) + 1) = 𝑚 ∨ ∃𝑦 ∈ ℤ (𝑦 · 2) = 𝑚) → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = (𝑚 + 1) ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = (𝑚 + 1))))
905, 19, 24, 29, 37, 89nn0ind 11684 1 (𝑁 ∈ ℕ0 → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 382  wa 383   = wceq 1632  wcel 2139  wrex 3051  (class class class)co 6814  cc 10146  0cc0 10148  1c1 10149   + caddc 10151   · cmul 10153  2c2 11282  0cn0 11504  cz 11589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-nn 11233  df-2 11291  df-n0 11505  df-z 11590
This theorem is referenced by:  odd2np1  15287
  Copyright terms: Public domain W3C validator