MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odd2np1lem Structured version   Visualization version   GIF version

Theorem odd2np1lem 14988
Description: Lemma for odd2np1 14989. (Contributed by Scott Fenton, 3-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
odd2np1lem (𝑁 ∈ ℕ0 → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁))
Distinct variable groups:   𝑘,𝑁   𝑛,𝑁

Proof of Theorem odd2np1lem
Dummy variables 𝑗 𝑚 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq2 2632 . . . 4 (𝑗 = 0 → (((2 · 𝑛) + 1) = 𝑗 ↔ ((2 · 𝑛) + 1) = 0))
21rexbidv 3045 . . 3 (𝑗 = 0 → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑗 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 0))
3 eqeq2 2632 . . . 4 (𝑗 = 0 → ((𝑘 · 2) = 𝑗 ↔ (𝑘 · 2) = 0))
43rexbidv 3045 . . 3 (𝑗 = 0 → (∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑗 ↔ ∃𝑘 ∈ ℤ (𝑘 · 2) = 0))
52, 4orbi12d 745 . 2 (𝑗 = 0 → ((∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑗 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑗) ↔ (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 0 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 0)))
6 eqeq2 2632 . . . . 5 (𝑗 = 𝑚 → (((2 · 𝑛) + 1) = 𝑗 ↔ ((2 · 𝑛) + 1) = 𝑚))
76rexbidv 3045 . . . 4 (𝑗 = 𝑚 → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑗 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑚))
8 oveq2 6612 . . . . . . 7 (𝑛 = 𝑥 → (2 · 𝑛) = (2 · 𝑥))
98oveq1d 6619 . . . . . 6 (𝑛 = 𝑥 → ((2 · 𝑛) + 1) = ((2 · 𝑥) + 1))
109eqeq1d 2623 . . . . 5 (𝑛 = 𝑥 → (((2 · 𝑛) + 1) = 𝑚 ↔ ((2 · 𝑥) + 1) = 𝑚))
1110cbvrexv 3160 . . . 4 (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑚 ↔ ∃𝑥 ∈ ℤ ((2 · 𝑥) + 1) = 𝑚)
127, 11syl6bb 276 . . 3 (𝑗 = 𝑚 → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑗 ↔ ∃𝑥 ∈ ℤ ((2 · 𝑥) + 1) = 𝑚))
13 eqeq2 2632 . . . . 5 (𝑗 = 𝑚 → ((𝑘 · 2) = 𝑗 ↔ (𝑘 · 2) = 𝑚))
1413rexbidv 3045 . . . 4 (𝑗 = 𝑚 → (∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑗 ↔ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑚))
15 oveq1 6611 . . . . . 6 (𝑘 = 𝑦 → (𝑘 · 2) = (𝑦 · 2))
1615eqeq1d 2623 . . . . 5 (𝑘 = 𝑦 → ((𝑘 · 2) = 𝑚 ↔ (𝑦 · 2) = 𝑚))
1716cbvrexv 3160 . . . 4 (∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑚 ↔ ∃𝑦 ∈ ℤ (𝑦 · 2) = 𝑚)
1814, 17syl6bb 276 . . 3 (𝑗 = 𝑚 → (∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑗 ↔ ∃𝑦 ∈ ℤ (𝑦 · 2) = 𝑚))
1912, 18orbi12d 745 . 2 (𝑗 = 𝑚 → ((∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑗 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑗) ↔ (∃𝑥 ∈ ℤ ((2 · 𝑥) + 1) = 𝑚 ∨ ∃𝑦 ∈ ℤ (𝑦 · 2) = 𝑚)))
20 eqeq2 2632 . . . 4 (𝑗 = (𝑚 + 1) → (((2 · 𝑛) + 1) = 𝑗 ↔ ((2 · 𝑛) + 1) = (𝑚 + 1)))
2120rexbidv 3045 . . 3 (𝑗 = (𝑚 + 1) → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑗 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = (𝑚 + 1)))
22 eqeq2 2632 . . . 4 (𝑗 = (𝑚 + 1) → ((𝑘 · 2) = 𝑗 ↔ (𝑘 · 2) = (𝑚 + 1)))
2322rexbidv 3045 . . 3 (𝑗 = (𝑚 + 1) → (∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑗 ↔ ∃𝑘 ∈ ℤ (𝑘 · 2) = (𝑚 + 1)))
2421, 23orbi12d 745 . 2 (𝑗 = (𝑚 + 1) → ((∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑗 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑗) ↔ (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = (𝑚 + 1) ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = (𝑚 + 1))))
25 eqeq2 2632 . . . 4 (𝑗 = 𝑁 → (((2 · 𝑛) + 1) = 𝑗 ↔ ((2 · 𝑛) + 1) = 𝑁))
2625rexbidv 3045 . . 3 (𝑗 = 𝑁 → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑗 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
27 eqeq2 2632 . . . 4 (𝑗 = 𝑁 → ((𝑘 · 2) = 𝑗 ↔ (𝑘 · 2) = 𝑁))
2827rexbidv 3045 . . 3 (𝑗 = 𝑁 → (∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑗 ↔ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁))
2926, 28orbi12d 745 . 2 (𝑗 = 𝑁 → ((∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑗 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑗) ↔ (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁)))
30 0z 11332 . . . 4 0 ∈ ℤ
31 2cn 11035 . . . . 5 2 ∈ ℂ
3231mul02i 10169 . . . 4 (0 · 2) = 0
33 oveq1 6611 . . . . . 6 (𝑘 = 0 → (𝑘 · 2) = (0 · 2))
3433eqeq1d 2623 . . . . 5 (𝑘 = 0 → ((𝑘 · 2) = 0 ↔ (0 · 2) = 0))
3534rspcev 3295 . . . 4 ((0 ∈ ℤ ∧ (0 · 2) = 0) → ∃𝑘 ∈ ℤ (𝑘 · 2) = 0)
3630, 32, 35mp2an 707 . . 3 𝑘 ∈ ℤ (𝑘 · 2) = 0
3736olci 406 . 2 (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 0 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 0)
38 orcom 402 . . 3 ((∃𝑥 ∈ ℤ ((2 · 𝑥) + 1) = 𝑚 ∨ ∃𝑦 ∈ ℤ (𝑦 · 2) = 𝑚) ↔ (∃𝑦 ∈ ℤ (𝑦 · 2) = 𝑚 ∨ ∃𝑥 ∈ ℤ ((2 · 𝑥) + 1) = 𝑚))
39 zcn 11326 . . . . . . . . 9 (𝑦 ∈ ℤ → 𝑦 ∈ ℂ)
40 mulcom 9966 . . . . . . . . 9 ((𝑦 ∈ ℂ ∧ 2 ∈ ℂ) → (𝑦 · 2) = (2 · 𝑦))
4139, 31, 40sylancl 693 . . . . . . . 8 (𝑦 ∈ ℤ → (𝑦 · 2) = (2 · 𝑦))
4241adantl 482 . . . . . . 7 ((𝑚 ∈ ℕ0𝑦 ∈ ℤ) → (𝑦 · 2) = (2 · 𝑦))
4342eqeq1d 2623 . . . . . 6 ((𝑚 ∈ ℕ0𝑦 ∈ ℤ) → ((𝑦 · 2) = 𝑚 ↔ (2 · 𝑦) = 𝑚))
44 eqid 2621 . . . . . . . . 9 ((2 · 𝑦) + 1) = ((2 · 𝑦) + 1)
45 oveq2 6612 . . . . . . . . . . . 12 (𝑛 = 𝑦 → (2 · 𝑛) = (2 · 𝑦))
4645oveq1d 6619 . . . . . . . . . . 11 (𝑛 = 𝑦 → ((2 · 𝑛) + 1) = ((2 · 𝑦) + 1))
4746eqeq1d 2623 . . . . . . . . . 10 (𝑛 = 𝑦 → (((2 · 𝑛) + 1) = ((2 · 𝑦) + 1) ↔ ((2 · 𝑦) + 1) = ((2 · 𝑦) + 1)))
4847rspcev 3295 . . . . . . . . 9 ((𝑦 ∈ ℤ ∧ ((2 · 𝑦) + 1) = ((2 · 𝑦) + 1)) → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = ((2 · 𝑦) + 1))
4944, 48mpan2 706 . . . . . . . 8 (𝑦 ∈ ℤ → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = ((2 · 𝑦) + 1))
50 oveq1 6611 . . . . . . . . . 10 ((2 · 𝑦) = 𝑚 → ((2 · 𝑦) + 1) = (𝑚 + 1))
5150eqeq2d 2631 . . . . . . . . 9 ((2 · 𝑦) = 𝑚 → (((2 · 𝑛) + 1) = ((2 · 𝑦) + 1) ↔ ((2 · 𝑛) + 1) = (𝑚 + 1)))
5251rexbidv 3045 . . . . . . . 8 ((2 · 𝑦) = 𝑚 → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = ((2 · 𝑦) + 1) ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = (𝑚 + 1)))
5349, 52syl5ibcom 235 . . . . . . 7 (𝑦 ∈ ℤ → ((2 · 𝑦) = 𝑚 → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = (𝑚 + 1)))
5453adantl 482 . . . . . 6 ((𝑚 ∈ ℕ0𝑦 ∈ ℤ) → ((2 · 𝑦) = 𝑚 → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = (𝑚 + 1)))
5543, 54sylbid 230 . . . . 5 ((𝑚 ∈ ℕ0𝑦 ∈ ℤ) → ((𝑦 · 2) = 𝑚 → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = (𝑚 + 1)))
5655rexlimdva 3024 . . . 4 (𝑚 ∈ ℕ0 → (∃𝑦 ∈ ℤ (𝑦 · 2) = 𝑚 → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = (𝑚 + 1)))
57 peano2z 11362 . . . . . . . 8 (𝑥 ∈ ℤ → (𝑥 + 1) ∈ ℤ)
5857adantl 482 . . . . . . 7 ((𝑚 ∈ ℕ0𝑥 ∈ ℤ) → (𝑥 + 1) ∈ ℤ)
59 zcn 11326 . . . . . . . . 9 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
60 mulcom 9966 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ 2 ∈ ℂ) → (𝑥 · 2) = (2 · 𝑥))
6131, 60mpan2 706 . . . . . . . . . . . 12 (𝑥 ∈ ℂ → (𝑥 · 2) = (2 · 𝑥))
6231mulid2i 9987 . . . . . . . . . . . . 13 (1 · 2) = 2
6362a1i 11 . . . . . . . . . . . 12 (𝑥 ∈ ℂ → (1 · 2) = 2)
6461, 63oveq12d 6622 . . . . . . . . . . 11 (𝑥 ∈ ℂ → ((𝑥 · 2) + (1 · 2)) = ((2 · 𝑥) + 2))
65 df-2 11023 . . . . . . . . . . . 12 2 = (1 + 1)
6665oveq2i 6615 . . . . . . . . . . 11 ((2 · 𝑥) + 2) = ((2 · 𝑥) + (1 + 1))
6764, 66syl6eq 2671 . . . . . . . . . 10 (𝑥 ∈ ℂ → ((𝑥 · 2) + (1 · 2)) = ((2 · 𝑥) + (1 + 1)))
68 ax-1cn 9938 . . . . . . . . . . 11 1 ∈ ℂ
69 adddir 9975 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ 1 ∈ ℂ ∧ 2 ∈ ℂ) → ((𝑥 + 1) · 2) = ((𝑥 · 2) + (1 · 2)))
7068, 31, 69mp3an23 1413 . . . . . . . . . 10 (𝑥 ∈ ℂ → ((𝑥 + 1) · 2) = ((𝑥 · 2) + (1 · 2)))
71 mulcl 9964 . . . . . . . . . . . 12 ((2 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (2 · 𝑥) ∈ ℂ)
7231, 71mpan 705 . . . . . . . . . . 11 (𝑥 ∈ ℂ → (2 · 𝑥) ∈ ℂ)
73 addass 9967 . . . . . . . . . . . 12 (((2 · 𝑥) ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ∈ ℂ) → (((2 · 𝑥) + 1) + 1) = ((2 · 𝑥) + (1 + 1)))
7468, 68, 73mp3an23 1413 . . . . . . . . . . 11 ((2 · 𝑥) ∈ ℂ → (((2 · 𝑥) + 1) + 1) = ((2 · 𝑥) + (1 + 1)))
7572, 74syl 17 . . . . . . . . . 10 (𝑥 ∈ ℂ → (((2 · 𝑥) + 1) + 1) = ((2 · 𝑥) + (1 + 1)))
7667, 70, 753eqtr4d 2665 . . . . . . . . 9 (𝑥 ∈ ℂ → ((𝑥 + 1) · 2) = (((2 · 𝑥) + 1) + 1))
7759, 76syl 17 . . . . . . . 8 (𝑥 ∈ ℤ → ((𝑥 + 1) · 2) = (((2 · 𝑥) + 1) + 1))
7877adantl 482 . . . . . . 7 ((𝑚 ∈ ℕ0𝑥 ∈ ℤ) → ((𝑥 + 1) · 2) = (((2 · 𝑥) + 1) + 1))
79 oveq1 6611 . . . . . . . . 9 (𝑘 = (𝑥 + 1) → (𝑘 · 2) = ((𝑥 + 1) · 2))
8079eqeq1d 2623 . . . . . . . 8 (𝑘 = (𝑥 + 1) → ((𝑘 · 2) = (((2 · 𝑥) + 1) + 1) ↔ ((𝑥 + 1) · 2) = (((2 · 𝑥) + 1) + 1)))
8180rspcev 3295 . . . . . . 7 (((𝑥 + 1) ∈ ℤ ∧ ((𝑥 + 1) · 2) = (((2 · 𝑥) + 1) + 1)) → ∃𝑘 ∈ ℤ (𝑘 · 2) = (((2 · 𝑥) + 1) + 1))
8258, 78, 81syl2anc 692 . . . . . 6 ((𝑚 ∈ ℕ0𝑥 ∈ ℤ) → ∃𝑘 ∈ ℤ (𝑘 · 2) = (((2 · 𝑥) + 1) + 1))
83 oveq1 6611 . . . . . . . 8 (((2 · 𝑥) + 1) = 𝑚 → (((2 · 𝑥) + 1) + 1) = (𝑚 + 1))
8483eqeq2d 2631 . . . . . . 7 (((2 · 𝑥) + 1) = 𝑚 → ((𝑘 · 2) = (((2 · 𝑥) + 1) + 1) ↔ (𝑘 · 2) = (𝑚 + 1)))
8584rexbidv 3045 . . . . . 6 (((2 · 𝑥) + 1) = 𝑚 → (∃𝑘 ∈ ℤ (𝑘 · 2) = (((2 · 𝑥) + 1) + 1) ↔ ∃𝑘 ∈ ℤ (𝑘 · 2) = (𝑚 + 1)))
8682, 85syl5ibcom 235 . . . . 5 ((𝑚 ∈ ℕ0𝑥 ∈ ℤ) → (((2 · 𝑥) + 1) = 𝑚 → ∃𝑘 ∈ ℤ (𝑘 · 2) = (𝑚 + 1)))
8786rexlimdva 3024 . . . 4 (𝑚 ∈ ℕ0 → (∃𝑥 ∈ ℤ ((2 · 𝑥) + 1) = 𝑚 → ∃𝑘 ∈ ℤ (𝑘 · 2) = (𝑚 + 1)))
8856, 87orim12d 882 . . 3 (𝑚 ∈ ℕ0 → ((∃𝑦 ∈ ℤ (𝑦 · 2) = 𝑚 ∨ ∃𝑥 ∈ ℤ ((2 · 𝑥) + 1) = 𝑚) → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = (𝑚 + 1) ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = (𝑚 + 1))))
8938, 88syl5bi 232 . 2 (𝑚 ∈ ℕ0 → ((∃𝑥 ∈ ℤ ((2 · 𝑥) + 1) = 𝑚 ∨ ∃𝑦 ∈ ℤ (𝑦 · 2) = 𝑚) → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = (𝑚 + 1) ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = (𝑚 + 1))))
905, 19, 24, 29, 37, 89nn0ind 11416 1 (𝑁 ∈ ℕ0 → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 383  wa 384   = wceq 1480  wcel 1987  wrex 2908  (class class class)co 6604  cc 9878  0cc0 9880  1c1 9881   + caddc 9883   · cmul 9885  2c2 11014  0cn0 11236  cz 11321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-n0 11237  df-z 11322
This theorem is referenced by:  odd2np1  14989
  Copyright terms: Public domain W3C validator