Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  odd2prm2 Structured version   Visualization version   GIF version

Theorem odd2prm2 43882
Description: If an odd number is the sum of two prime numbers, one of the prime numbers must be 2. (Contributed by AV, 26-Dec-2021.)
Assertion
Ref Expression
odd2prm2 ((𝑁 ∈ Odd ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑄)) → (𝑃 = 2 ∨ 𝑄 = 2))

Proof of Theorem odd2prm2
StepHypRef Expression
1 eleq1 2900 . . . . . 6 (𝑁 = (𝑃 + 𝑄) → (𝑁 ∈ Odd ↔ (𝑃 + 𝑄) ∈ Odd ))
2 evennodd 43807 . . . . . . . . 9 ((𝑃 + 𝑄) ∈ Even → ¬ (𝑃 + 𝑄) ∈ Odd )
32pm2.21d 121 . . . . . . . 8 ((𝑃 + 𝑄) ∈ Even → ((𝑃 + 𝑄) ∈ Odd → (𝑃 = 2 ∨ 𝑄 = 2)))
4 df-ne 3017 . . . . . . . . . . . 12 (𝑃 ≠ 2 ↔ ¬ 𝑃 = 2)
5 eldifsn 4718 . . . . . . . . . . . . . 14 (𝑃 ∈ (ℙ ∖ {2}) ↔ (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2))
6 oddprmALTV 43851 . . . . . . . . . . . . . 14 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ Odd )
75, 6sylbir 237 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝑃 ≠ 2) → 𝑃 ∈ Odd )
87ex 415 . . . . . . . . . . . 12 (𝑃 ∈ ℙ → (𝑃 ≠ 2 → 𝑃 ∈ Odd ))
94, 8syl5bir 245 . . . . . . . . . . 11 (𝑃 ∈ ℙ → (¬ 𝑃 = 2 → 𝑃 ∈ Odd ))
10 df-ne 3017 . . . . . . . . . . . 12 (𝑄 ≠ 2 ↔ ¬ 𝑄 = 2)
11 eldifsn 4718 . . . . . . . . . . . . . 14 (𝑄 ∈ (ℙ ∖ {2}) ↔ (𝑄 ∈ ℙ ∧ 𝑄 ≠ 2))
12 oddprmALTV 43851 . . . . . . . . . . . . . 14 (𝑄 ∈ (ℙ ∖ {2}) → 𝑄 ∈ Odd )
1311, 12sylbir 237 . . . . . . . . . . . . 13 ((𝑄 ∈ ℙ ∧ 𝑄 ≠ 2) → 𝑄 ∈ Odd )
1413ex 415 . . . . . . . . . . . 12 (𝑄 ∈ ℙ → (𝑄 ≠ 2 → 𝑄 ∈ Odd ))
1510, 14syl5bir 245 . . . . . . . . . . 11 (𝑄 ∈ ℙ → (¬ 𝑄 = 2 → 𝑄 ∈ Odd ))
169, 15im2anan9 621 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → ((¬ 𝑃 = 2 ∧ ¬ 𝑄 = 2) → (𝑃 ∈ Odd ∧ 𝑄 ∈ Odd )))
1716imp 409 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (¬ 𝑃 = 2 ∧ ¬ 𝑄 = 2)) → (𝑃 ∈ Odd ∧ 𝑄 ∈ Odd ))
18 opoeALTV 43847 . . . . . . . . 9 ((𝑃 ∈ Odd ∧ 𝑄 ∈ Odd ) → (𝑃 + 𝑄) ∈ Even )
1917, 18syl 17 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (¬ 𝑃 = 2 ∧ ¬ 𝑄 = 2)) → (𝑃 + 𝑄) ∈ Even )
203, 19syl11 33 . . . . . . 7 ((𝑃 + 𝑄) ∈ Odd → (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (¬ 𝑃 = 2 ∧ ¬ 𝑄 = 2)) → (𝑃 = 2 ∨ 𝑄 = 2)))
2120expd 418 . . . . . 6 ((𝑃 + 𝑄) ∈ Odd → ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → ((¬ 𝑃 = 2 ∧ ¬ 𝑄 = 2) → (𝑃 = 2 ∨ 𝑄 = 2))))
221, 21syl6bi 255 . . . . 5 (𝑁 = (𝑃 + 𝑄) → (𝑁 ∈ Odd → ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → ((¬ 𝑃 = 2 ∧ ¬ 𝑄 = 2) → (𝑃 = 2 ∨ 𝑄 = 2)))))
23223imp231 1109 . . . 4 ((𝑁 ∈ Odd ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑄)) → ((¬ 𝑃 = 2 ∧ ¬ 𝑄 = 2) → (𝑃 = 2 ∨ 𝑄 = 2)))
2423com12 32 . . 3 ((¬ 𝑃 = 2 ∧ ¬ 𝑄 = 2) → ((𝑁 ∈ Odd ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑄)) → (𝑃 = 2 ∨ 𝑄 = 2)))
2524ex 415 . 2 𝑃 = 2 → (¬ 𝑄 = 2 → ((𝑁 ∈ Odd ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑄)) → (𝑃 = 2 ∨ 𝑄 = 2))))
26 orc 863 . . 3 (𝑃 = 2 → (𝑃 = 2 ∨ 𝑄 = 2))
2726a1d 25 . 2 (𝑃 = 2 → ((𝑁 ∈ Odd ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑄)) → (𝑃 = 2 ∨ 𝑄 = 2)))
28 olc 864 . . 3 (𝑄 = 2 → (𝑃 = 2 ∨ 𝑄 = 2))
2928a1d 25 . 2 (𝑄 = 2 → ((𝑁 ∈ Odd ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑄)) → (𝑃 = 2 ∨ 𝑄 = 2)))
3025, 27, 29pm2.61ii 185 1 ((𝑁 ∈ Odd ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑄)) → (𝑃 = 2 ∨ 𝑄 = 2))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  wo 843  w3a 1083   = wceq 1533  wcel 2110  wne 3016  cdif 3932  {csn 4566  (class class class)co 7155   + caddc 10539  2c2 11691  cprime 16014   Even ceven 43788   Odd codd 43789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-2o 8102  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-sup 8905  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-3 11700  df-n0 11897  df-z 11981  df-uz 12243  df-rp 12389  df-seq 13369  df-exp 13429  df-cj 14457  df-re 14458  df-im 14459  df-sqrt 14593  df-abs 14594  df-dvds 15607  df-prm 16015  df-even 43790  df-odd 43791
This theorem is referenced by:  even3prm2  43883
  Copyright terms: Public domain W3C validator