Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oddprmALTV Structured version   Visualization version   GIF version

Theorem oddprmALTV 39934
Description: A prime not equal to 2 is odd. (Contributed by Mario Carneiro, 4-Feb-2015.) (Revised by AV, 21-Jun-2020.)
Assertion
Ref Expression
oddprmALTV (𝑁 ∈ (ℙ ∖ {2}) → 𝑁 ∈ Odd )

Proof of Theorem oddprmALTV
StepHypRef Expression
1 eldifsn 4259 . 2 (𝑁 ∈ (ℙ ∖ {2}) ↔ (𝑁 ∈ ℙ ∧ 𝑁 ≠ 2))
2 prmz 15173 . . . 4 (𝑁 ∈ ℙ → 𝑁 ∈ ℤ)
32adantr 479 . . 3 ((𝑁 ∈ ℙ ∧ 𝑁 ≠ 2) → 𝑁 ∈ ℤ)
4 necom 2834 . . . . . . 7 (𝑁 ≠ 2 ↔ 2 ≠ 𝑁)
5 df-ne 2781 . . . . . . 7 (2 ≠ 𝑁 ↔ ¬ 2 = 𝑁)
64, 5sylbb 207 . . . . . 6 (𝑁 ≠ 2 → ¬ 2 = 𝑁)
76adantl 480 . . . . 5 ((𝑁 ∈ ℙ ∧ 𝑁 ≠ 2) → ¬ 2 = 𝑁)
8 1ne2 11087 . . . . . . 7 1 ≠ 2
98nesymi 2838 . . . . . 6 ¬ 2 = 1
109a1i 11 . . . . 5 ((𝑁 ∈ ℙ ∧ 𝑁 ≠ 2) → ¬ 2 = 1)
11 ioran 509 . . . . 5 (¬ (2 = 𝑁 ∨ 2 = 1) ↔ (¬ 2 = 𝑁 ∧ ¬ 2 = 1))
127, 10, 11sylanbrc 694 . . . 4 ((𝑁 ∈ ℙ ∧ 𝑁 ≠ 2) → ¬ (2 = 𝑁 ∨ 2 = 1))
13 2nn 11032 . . . . . 6 2 ∈ ℕ
1413a1i 11 . . . . 5 (𝑁 ≠ 2 → 2 ∈ ℕ)
15 dvdsprime 15184 . . . . 5 ((𝑁 ∈ ℙ ∧ 2 ∈ ℕ) → (2 ∥ 𝑁 ↔ (2 = 𝑁 ∨ 2 = 1)))
1614, 15sylan2 489 . . . 4 ((𝑁 ∈ ℙ ∧ 𝑁 ≠ 2) → (2 ∥ 𝑁 ↔ (2 = 𝑁 ∨ 2 = 1)))
1712, 16mtbird 313 . . 3 ((𝑁 ∈ ℙ ∧ 𝑁 ≠ 2) → ¬ 2 ∥ 𝑁)
18 isodd3 39901 . . 3 (𝑁 ∈ Odd ↔ (𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁))
193, 17, 18sylanbrc 694 . 2 ((𝑁 ∈ ℙ ∧ 𝑁 ≠ 2) → 𝑁 ∈ Odd )
201, 19sylbi 205 1 (𝑁 ∈ (ℙ ∖ {2}) → 𝑁 ∈ Odd )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wo 381  wa 382   = wceq 1474  wcel 1976  wne 2779  cdif 3536  {csn 4124   class class class wbr 4577  1c1 9793  cn 10867  2c2 10917  cz 11210  cdvds 14767  cprime 15169   Odd codd 39874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869  ax-pre-sup 9870
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6935  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-2o 7425  df-oadd 7428  df-er 7606  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-sup 8208  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-div 10534  df-nn 10868  df-2 10926  df-3 10927  df-n0 11140  df-z 11211  df-uz 11520  df-rp 11665  df-seq 12619  df-exp 12678  df-cj 13633  df-re 13634  df-im 13635  df-sqrt 13769  df-abs 13770  df-dvds 14768  df-prm 15170  df-odd 39876
This theorem is referenced by:  evenprm2  39959  bgoldbtbndlem2  40020  bgoldbtbndlem3  40021  bgoldbtbndlem4  40022  bgoldbtbnd  40023
  Copyright terms: Public domain W3C validator