Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oddprmALTV Structured version   Visualization version   GIF version

Theorem oddprmALTV 43846
Description: A prime not equal to 2 is odd. (Contributed by Mario Carneiro, 4-Feb-2015.) (Revised by AV, 21-Jun-2020.)
Assertion
Ref Expression
oddprmALTV (𝑁 ∈ (ℙ ∖ {2}) → 𝑁 ∈ Odd )

Proof of Theorem oddprmALTV
StepHypRef Expression
1 eldifsn 4712 . 2 (𝑁 ∈ (ℙ ∖ {2}) ↔ (𝑁 ∈ ℙ ∧ 𝑁 ≠ 2))
2 prmz 16013 . . . 4 (𝑁 ∈ ℙ → 𝑁 ∈ ℤ)
32adantr 483 . . 3 ((𝑁 ∈ ℙ ∧ 𝑁 ≠ 2) → 𝑁 ∈ ℤ)
4 necom 3069 . . . . . . 7 (𝑁 ≠ 2 ↔ 2 ≠ 𝑁)
5 df-ne 3017 . . . . . . 7 (2 ≠ 𝑁 ↔ ¬ 2 = 𝑁)
64, 5sylbb 221 . . . . . 6 (𝑁 ≠ 2 → ¬ 2 = 𝑁)
76adantl 484 . . . . 5 ((𝑁 ∈ ℙ ∧ 𝑁 ≠ 2) → ¬ 2 = 𝑁)
8 1ne2 11839 . . . . . . 7 1 ≠ 2
98nesymi 3073 . . . . . 6 ¬ 2 = 1
109a1i 11 . . . . 5 ((𝑁 ∈ ℙ ∧ 𝑁 ≠ 2) → ¬ 2 = 1)
11 ioran 980 . . . . 5 (¬ (2 = 𝑁 ∨ 2 = 1) ↔ (¬ 2 = 𝑁 ∧ ¬ 2 = 1))
127, 10, 11sylanbrc 585 . . . 4 ((𝑁 ∈ ℙ ∧ 𝑁 ≠ 2) → ¬ (2 = 𝑁 ∨ 2 = 1))
13 2nn 11704 . . . . . 6 2 ∈ ℕ
1413a1i 11 . . . . 5 (𝑁 ≠ 2 → 2 ∈ ℕ)
15 dvdsprime 16025 . . . . 5 ((𝑁 ∈ ℙ ∧ 2 ∈ ℕ) → (2 ∥ 𝑁 ↔ (2 = 𝑁 ∨ 2 = 1)))
1614, 15sylan2 594 . . . 4 ((𝑁 ∈ ℙ ∧ 𝑁 ≠ 2) → (2 ∥ 𝑁 ↔ (2 = 𝑁 ∨ 2 = 1)))
1712, 16mtbird 327 . . 3 ((𝑁 ∈ ℙ ∧ 𝑁 ≠ 2) → ¬ 2 ∥ 𝑁)
18 isodd3 43811 . . 3 (𝑁 ∈ Odd ↔ (𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁))
193, 17, 18sylanbrc 585 . 2 ((𝑁 ∈ ℙ ∧ 𝑁 ≠ 2) → 𝑁 ∈ Odd )
201, 19sylbi 219 1 (𝑁 ∈ (ℙ ∖ {2}) → 𝑁 ∈ Odd )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843   = wceq 1533  wcel 2110  wne 3016  cdif 3932  {csn 4560   class class class wbr 5058  1c1 10532  cn 11632  2c2 11686  cz 11975  cdvds 15601  cprime 16009   Odd codd 43784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-seq 13364  df-exp 13424  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-dvds 15602  df-prm 16010  df-odd 43786
This theorem is referenced by:  evenprm2  43873  odd2prm2  43877  even3prm2  43878  bgoldbtbndlem2  43965  bgoldbtbndlem3  43966  bgoldbtbndlem4  43967  bgoldbtbnd  43968
  Copyright terms: Public domain W3C validator