MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oddvds Structured version   Visualization version   GIF version

Theorem oddvds 18667
Description: The only multiples of 𝐴 that are equal to the identity are the multiples of the order of 𝐴. (Contributed by Mario Carneiro, 14-Jan-2015.) (Revised by Mario Carneiro, 23-Sep-2015.)
Hypotheses
Ref Expression
odcl.1 𝑋 = (Base‘𝐺)
odcl.2 𝑂 = (od‘𝐺)
odid.3 · = (.g𝐺)
odid.4 0 = (0g𝐺)
Assertion
Ref Expression
oddvds ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → ((𝑂𝐴) ∥ 𝑁 ↔ (𝑁 · 𝐴) = 0 ))

Proof of Theorem oddvds
StepHypRef Expression
1 simpr 487 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (𝑂𝐴) ∈ ℕ)
2 simpl3 1188 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → 𝑁 ∈ ℤ)
3 dvdsval3 15603 . . . 4 (((𝑂𝐴) ∈ ℕ ∧ 𝑁 ∈ ℤ) → ((𝑂𝐴) ∥ 𝑁 ↔ (𝑁 mod (𝑂𝐴)) = 0))
41, 2, 3syl2anc 586 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑂𝐴) ∥ 𝑁 ↔ (𝑁 mod (𝑂𝐴)) = 0))
5 simpl2 1187 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → 𝐴𝑋)
6 odcl.1 . . . . . . 7 𝑋 = (Base‘𝐺)
7 odid.4 . . . . . . 7 0 = (0g𝐺)
8 odid.3 . . . . . . 7 · = (.g𝐺)
96, 7, 8mulg0 18223 . . . . . 6 (𝐴𝑋 → (0 · 𝐴) = 0 )
105, 9syl 17 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (0 · 𝐴) = 0 )
11 oveq1 7155 . . . . . 6 ((𝑁 mod (𝑂𝐴)) = 0 → ((𝑁 mod (𝑂𝐴)) · 𝐴) = (0 · 𝐴))
1211eqeq1d 2821 . . . . 5 ((𝑁 mod (𝑂𝐴)) = 0 → (((𝑁 mod (𝑂𝐴)) · 𝐴) = 0 ↔ (0 · 𝐴) = 0 ))
1310, 12syl5ibrcom 249 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑁 mod (𝑂𝐴)) = 0 → ((𝑁 mod (𝑂𝐴)) · 𝐴) = 0 ))
142zred 12079 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → 𝑁 ∈ ℝ)
151nnrpd 12421 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (𝑂𝐴) ∈ ℝ+)
16 modlt 13240 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ (𝑂𝐴) ∈ ℝ+) → (𝑁 mod (𝑂𝐴)) < (𝑂𝐴))
1714, 15, 16syl2anc 586 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (𝑁 mod (𝑂𝐴)) < (𝑂𝐴))
182, 1zmodcld 13252 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (𝑁 mod (𝑂𝐴)) ∈ ℕ0)
1918nn0red 11948 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (𝑁 mod (𝑂𝐴)) ∈ ℝ)
201nnred 11645 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (𝑂𝐴) ∈ ℝ)
2119, 20ltnled 10779 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑁 mod (𝑂𝐴)) < (𝑂𝐴) ↔ ¬ (𝑂𝐴) ≤ (𝑁 mod (𝑂𝐴))))
2217, 21mpbid 234 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ¬ (𝑂𝐴) ≤ (𝑁 mod (𝑂𝐴)))
23 odcl.2 . . . . . . . . . . . 12 𝑂 = (od‘𝐺)
246, 23, 8, 7odlem2 18659 . . . . . . . . . . 11 ((𝐴𝑋 ∧ (𝑁 mod (𝑂𝐴)) ∈ ℕ ∧ ((𝑁 mod (𝑂𝐴)) · 𝐴) = 0 ) → (𝑂𝐴) ∈ (1...(𝑁 mod (𝑂𝐴))))
25 elfzle2 12903 . . . . . . . . . . 11 ((𝑂𝐴) ∈ (1...(𝑁 mod (𝑂𝐴))) → (𝑂𝐴) ≤ (𝑁 mod (𝑂𝐴)))
2624, 25syl 17 . . . . . . . . . 10 ((𝐴𝑋 ∧ (𝑁 mod (𝑂𝐴)) ∈ ℕ ∧ ((𝑁 mod (𝑂𝐴)) · 𝐴) = 0 ) → (𝑂𝐴) ≤ (𝑁 mod (𝑂𝐴)))
27263com23 1121 . . . . . . . . 9 ((𝐴𝑋 ∧ ((𝑁 mod (𝑂𝐴)) · 𝐴) = 0 ∧ (𝑁 mod (𝑂𝐴)) ∈ ℕ) → (𝑂𝐴) ≤ (𝑁 mod (𝑂𝐴)))
28273expia 1116 . . . . . . . 8 ((𝐴𝑋 ∧ ((𝑁 mod (𝑂𝐴)) · 𝐴) = 0 ) → ((𝑁 mod (𝑂𝐴)) ∈ ℕ → (𝑂𝐴) ≤ (𝑁 mod (𝑂𝐴))))
2928con3d 155 . . . . . . 7 ((𝐴𝑋 ∧ ((𝑁 mod (𝑂𝐴)) · 𝐴) = 0 ) → (¬ (𝑂𝐴) ≤ (𝑁 mod (𝑂𝐴)) → ¬ (𝑁 mod (𝑂𝐴)) ∈ ℕ))
3029impancom 454 . . . . . 6 ((𝐴𝑋 ∧ ¬ (𝑂𝐴) ≤ (𝑁 mod (𝑂𝐴))) → (((𝑁 mod (𝑂𝐴)) · 𝐴) = 0 → ¬ (𝑁 mod (𝑂𝐴)) ∈ ℕ))
315, 22, 30syl2anc 586 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (((𝑁 mod (𝑂𝐴)) · 𝐴) = 0 → ¬ (𝑁 mod (𝑂𝐴)) ∈ ℕ))
32 elnn0 11891 . . . . . . 7 ((𝑁 mod (𝑂𝐴)) ∈ ℕ0 ↔ ((𝑁 mod (𝑂𝐴)) ∈ ℕ ∨ (𝑁 mod (𝑂𝐴)) = 0))
3318, 32sylib 220 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑁 mod (𝑂𝐴)) ∈ ℕ ∨ (𝑁 mod (𝑂𝐴)) = 0))
3433ord 860 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (¬ (𝑁 mod (𝑂𝐴)) ∈ ℕ → (𝑁 mod (𝑂𝐴)) = 0))
3531, 34syld 47 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (((𝑁 mod (𝑂𝐴)) · 𝐴) = 0 → (𝑁 mod (𝑂𝐴)) = 0))
3613, 35impbid 214 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑁 mod (𝑂𝐴)) = 0 ↔ ((𝑁 mod (𝑂𝐴)) · 𝐴) = 0 ))
376, 23, 8, 7odmod 18666 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑁 mod (𝑂𝐴)) · 𝐴) = (𝑁 · 𝐴))
3837eqeq1d 2821 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (((𝑁 mod (𝑂𝐴)) · 𝐴) = 0 ↔ (𝑁 · 𝐴) = 0 ))
394, 36, 383bitrd 307 . 2 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑂𝐴) ∥ 𝑁 ↔ (𝑁 · 𝐴) = 0 ))
40 simpr 487 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) = 0) → (𝑂𝐴) = 0)
4140breq1d 5067 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) = 0) → ((𝑂𝐴) ∥ 𝑁 ↔ 0 ∥ 𝑁))
42 simpl3 1188 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) = 0) → 𝑁 ∈ ℤ)
43 0dvds 15622 . . . 4 (𝑁 ∈ ℤ → (0 ∥ 𝑁𝑁 = 0))
4442, 43syl 17 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) = 0) → (0 ∥ 𝑁𝑁 = 0))
45 simpl2 1187 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) = 0) → 𝐴𝑋)
4645, 9syl 17 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) = 0) → (0 · 𝐴) = 0 )
47 oveq1 7155 . . . . . 6 (𝑁 = 0 → (𝑁 · 𝐴) = (0 · 𝐴))
4847eqeq1d 2821 . . . . 5 (𝑁 = 0 → ((𝑁 · 𝐴) = 0 ↔ (0 · 𝐴) = 0 ))
4946, 48syl5ibrcom 249 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) = 0) → (𝑁 = 0 → (𝑁 · 𝐴) = 0 ))
506, 23, 8, 7odnncl 18665 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → (𝑂𝐴) ∈ ℕ)
5150nnne0d 11679 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → (𝑂𝐴) ≠ 0)
5251expr 459 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ 𝑁 ≠ 0) → ((𝑁 · 𝐴) = 0 → (𝑂𝐴) ≠ 0))
5352impancom 454 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 · 𝐴) = 0 ) → (𝑁 ≠ 0 → (𝑂𝐴) ≠ 0))
5453necon4d 3038 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 · 𝐴) = 0 ) → ((𝑂𝐴) = 0 → 𝑁 = 0))
5554impancom 454 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) = 0) → ((𝑁 · 𝐴) = 0𝑁 = 0))
5649, 55impbid 214 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) = 0) → (𝑁 = 0 ↔ (𝑁 · 𝐴) = 0 ))
5741, 44, 563bitrd 307 . 2 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) = 0) → ((𝑂𝐴) ∥ 𝑁 ↔ (𝑁 · 𝐴) = 0 ))
586, 23odcl 18656 . . . 4 (𝐴𝑋 → (𝑂𝐴) ∈ ℕ0)
59583ad2ant2 1129 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → (𝑂𝐴) ∈ ℕ0)
60 elnn0 11891 . . 3 ((𝑂𝐴) ∈ ℕ0 ↔ ((𝑂𝐴) ∈ ℕ ∨ (𝑂𝐴) = 0))
6159, 60sylib 220 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → ((𝑂𝐴) ∈ ℕ ∨ (𝑂𝐴) = 0))
6239, 57, 61mpjaodan 955 1 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → ((𝑂𝐴) ∥ 𝑁 ↔ (𝑁 · 𝐴) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3a 1082   = wceq 1531  wcel 2108  wne 3014   class class class wbr 5057  cfv 6348  (class class class)co 7148  cr 10528  0cc0 10529  1c1 10530   < clt 10667  cle 10668  cn 11630  0cn0 11889  cz 11973  +crp 12381  ...cfz 12884   mod cmo 13229  cdvds 15599  Basecbs 16475  0gc0g 16705  Grpcgrp 18095  .gcmg 18216  odcod 18644
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-sup 8898  df-inf 8899  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-fz 12885  df-fl 13154  df-mod 13230  df-seq 13362  df-exp 13422  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-dvds 15600  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-minusg 18099  df-sbg 18100  df-mulg 18217  df-od 18648
This theorem is referenced by:  oddvdsi  18668  odcong  18669  odeq  18670  odmulgid  18673  odbezout  18677  gexdvds2  18702  gexod  18703  gexcl3  18704  odadd1  18960  odadd2  18961  oddvdssubg  18967  pgpfac1lem3a  19190  ablsimpgfindlem2  19222  chrdvds  20667  dchrfi  25823  dchrabs  25828  dchrptlem2  25833  idomodle  39786
  Copyright terms: Public domain W3C validator