MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oddvds2 Structured version   Visualization version   GIF version

Theorem oddvds2 17904
Description: The order of an element of a finite group divides the order (cardinality) of the group. Corollary of Lagrange's theorem for the order of a subgroup. (Contributed by Mario Carneiro, 14-Jan-2015.)
Hypotheses
Ref Expression
odcl2.1 𝑋 = (Base‘𝐺)
odcl2.2 𝑂 = (od‘𝐺)
Assertion
Ref Expression
oddvds2 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝐴𝑋) → (𝑂𝐴) ∥ (#‘𝑋))

Proof of Theorem oddvds2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 odcl2.1 . . . . 5 𝑋 = (Base‘𝐺)
2 odcl2.2 . . . . 5 𝑂 = (od‘𝐺)
3 eqid 2621 . . . . 5 (.g𝐺) = (.g𝐺)
4 eqid 2621 . . . . 5 (𝑥 ∈ ℤ ↦ (𝑥(.g𝐺)𝐴)) = (𝑥 ∈ ℤ ↦ (𝑥(.g𝐺)𝐴))
51, 2, 3, 4dfod2 17902 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝑂𝐴) = if(ran (𝑥 ∈ ℤ ↦ (𝑥(.g𝐺)𝐴)) ∈ Fin, (#‘ran (𝑥 ∈ ℤ ↦ (𝑥(.g𝐺)𝐴))), 0))
653adant2 1078 . . 3 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝐴𝑋) → (𝑂𝐴) = if(ran (𝑥 ∈ ℤ ↦ (𝑥(.g𝐺)𝐴)) ∈ Fin, (#‘ran (𝑥 ∈ ℤ ↦ (𝑥(.g𝐺)𝐴))), 0))
7 simp2 1060 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝐴𝑋) → 𝑋 ∈ Fin)
81, 3, 4cycsubgcl 17541 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (ran (𝑥 ∈ ℤ ↦ (𝑥(.g𝐺)𝐴)) ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ran (𝑥 ∈ ℤ ↦ (𝑥(.g𝐺)𝐴))))
983adant2 1078 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝐴𝑋) → (ran (𝑥 ∈ ℤ ↦ (𝑥(.g𝐺)𝐴)) ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ran (𝑥 ∈ ℤ ↦ (𝑥(.g𝐺)𝐴))))
109simpld 475 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝐴𝑋) → ran (𝑥 ∈ ℤ ↦ (𝑥(.g𝐺)𝐴)) ∈ (SubGrp‘𝐺))
111subgss 17516 . . . . . 6 (ran (𝑥 ∈ ℤ ↦ (𝑥(.g𝐺)𝐴)) ∈ (SubGrp‘𝐺) → ran (𝑥 ∈ ℤ ↦ (𝑥(.g𝐺)𝐴)) ⊆ 𝑋)
1210, 11syl 17 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝐴𝑋) → ran (𝑥 ∈ ℤ ↦ (𝑥(.g𝐺)𝐴)) ⊆ 𝑋)
13 ssfi 8124 . . . . 5 ((𝑋 ∈ Fin ∧ ran (𝑥 ∈ ℤ ↦ (𝑥(.g𝐺)𝐴)) ⊆ 𝑋) → ran (𝑥 ∈ ℤ ↦ (𝑥(.g𝐺)𝐴)) ∈ Fin)
147, 12, 13syl2anc 692 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝐴𝑋) → ran (𝑥 ∈ ℤ ↦ (𝑥(.g𝐺)𝐴)) ∈ Fin)
1514iftrued 4066 . . 3 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝐴𝑋) → if(ran (𝑥 ∈ ℤ ↦ (𝑥(.g𝐺)𝐴)) ∈ Fin, (#‘ran (𝑥 ∈ ℤ ↦ (𝑥(.g𝐺)𝐴))), 0) = (#‘ran (𝑥 ∈ ℤ ↦ (𝑥(.g𝐺)𝐴))))
166, 15eqtrd 2655 . 2 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝐴𝑋) → (𝑂𝐴) = (#‘ran (𝑥 ∈ ℤ ↦ (𝑥(.g𝐺)𝐴))))
171lagsubg 17577 . . 3 ((ran (𝑥 ∈ ℤ ↦ (𝑥(.g𝐺)𝐴)) ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → (#‘ran (𝑥 ∈ ℤ ↦ (𝑥(.g𝐺)𝐴))) ∥ (#‘𝑋))
1810, 7, 17syl2anc 692 . 2 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝐴𝑋) → (#‘ran (𝑥 ∈ ℤ ↦ (𝑥(.g𝐺)𝐴))) ∥ (#‘𝑋))
1916, 18eqbrtrd 4635 1 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝐴𝑋) → (𝑂𝐴) ∥ (#‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987  wss 3555  ifcif 4058   class class class wbr 4613  cmpt 4673  ran crn 5075  cfv 5847  (class class class)co 6604  Fincfn 7899  0cc0 9880  cz 11321  #chash 13057  cdvds 14907  Basecbs 15781  Grpcgrp 17343  .gcmg 17461  SubGrpcsubg 17509  odcod 17865
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-disj 4584  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-2o 7506  df-oadd 7509  df-omul 7510  df-er 7687  df-ec 7689  df-qs 7693  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-sup 8292  df-inf 8293  df-oi 8359  df-card 8709  df-acn 8712  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-n0 11237  df-z 11322  df-uz 11632  df-rp 11777  df-fz 12269  df-fzo 12407  df-fl 12533  df-mod 12609  df-seq 12742  df-exp 12801  df-hash 13058  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-clim 14153  df-sum 14351  df-dvds 14908  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-0g 16023  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-grp 17346  df-minusg 17347  df-sbg 17348  df-mulg 17462  df-subg 17512  df-eqg 17514  df-od 17869
This theorem is referenced by:  odsubdvds  17907  gexcl2  17925  gexdvds3  17926  pgpfi1  17931  prmcyg  18216  lt6abl  18217  ablfacrp  18386  pgpfac1lem2  18395  dchrfi  24880  dchrabs  24885
  Copyright terms: Public domain W3C validator