MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oddvdsnn0 Structured version   Visualization version   GIF version

Theorem oddvdsnn0 18674
Description: The only multiples of 𝐴 that are equal to the identity are the multiples of the order of 𝐴. (Contributed by Mario Carneiro, 23-Sep-2015.)
Hypotheses
Ref Expression
odcl.1 𝑋 = (Base‘𝐺)
odcl.2 𝑂 = (od‘𝐺)
odid.3 · = (.g𝐺)
odid.4 0 = (0g𝐺)
Assertion
Ref Expression
oddvdsnn0 ((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) → ((𝑂𝐴) ∥ 𝑁 ↔ (𝑁 · 𝐴) = 0 ))

Proof of Theorem oddvdsnn0
StepHypRef Expression
1 0nn0 11915 . . . . 5 0 ∈ ℕ0
2 odcl.1 . . . . . . 7 𝑋 = (Base‘𝐺)
3 odcl.2 . . . . . . 7 𝑂 = (od‘𝐺)
4 odid.3 . . . . . . 7 · = (.g𝐺)
5 odid.4 . . . . . . 7 0 = (0g𝐺)
62, 3, 4, 5mndodcong 18672 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑁 ∈ ℕ0 ∧ 0 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑂𝐴) ∥ (𝑁 − 0) ↔ (𝑁 · 𝐴) = (0 · 𝐴)))
763expia 1117 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑁 ∈ ℕ0 ∧ 0 ∈ ℕ0)) → ((𝑂𝐴) ∈ ℕ → ((𝑂𝐴) ∥ (𝑁 − 0) ↔ (𝑁 · 𝐴) = (0 · 𝐴))))
81, 7mpanr2 702 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ 𝑁 ∈ ℕ0) → ((𝑂𝐴) ∈ ℕ → ((𝑂𝐴) ∥ (𝑁 − 0) ↔ (𝑁 · 𝐴) = (0 · 𝐴))))
983impa 1106 . . 3 ((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) → ((𝑂𝐴) ∈ ℕ → ((𝑂𝐴) ∥ (𝑁 − 0) ↔ (𝑁 · 𝐴) = (0 · 𝐴))))
10 nn0cn 11910 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
11103ad2ant3 1131 . . . . . 6 ((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) → 𝑁 ∈ ℂ)
1211subid1d 10988 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) → (𝑁 − 0) = 𝑁)
1312breq2d 5080 . . . 4 ((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) → ((𝑂𝐴) ∥ (𝑁 − 0) ↔ (𝑂𝐴) ∥ 𝑁))
142, 5, 4mulg0 18233 . . . . . 6 (𝐴𝑋 → (0 · 𝐴) = 0 )
15143ad2ant2 1130 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) → (0 · 𝐴) = 0 )
1615eqeq2d 2834 . . . 4 ((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) → ((𝑁 · 𝐴) = (0 · 𝐴) ↔ (𝑁 · 𝐴) = 0 ))
1713, 16bibi12d 348 . . 3 ((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) → (((𝑂𝐴) ∥ (𝑁 − 0) ↔ (𝑁 · 𝐴) = (0 · 𝐴)) ↔ ((𝑂𝐴) ∥ 𝑁 ↔ (𝑁 · 𝐴) = 0 )))
189, 17sylibd 241 . 2 ((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) → ((𝑂𝐴) ∈ ℕ → ((𝑂𝐴) ∥ 𝑁 ↔ (𝑁 · 𝐴) = 0 )))
19 simpr 487 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) = 0) → (𝑂𝐴) = 0)
2019breq1d 5078 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) = 0) → ((𝑂𝐴) ∥ 𝑁 ↔ 0 ∥ 𝑁))
21 simpl3 1189 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) = 0) → 𝑁 ∈ ℕ0)
22 nn0z 12008 . . . . 5 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
23 0dvds 15632 . . . . 5 (𝑁 ∈ ℤ → (0 ∥ 𝑁𝑁 = 0))
2421, 22, 233syl 18 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) = 0) → (0 ∥ 𝑁𝑁 = 0))
2515adantr 483 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) = 0) → (0 · 𝐴) = 0 )
26 oveq1 7165 . . . . . . 7 (𝑁 = 0 → (𝑁 · 𝐴) = (0 · 𝐴))
2726eqeq1d 2825 . . . . . 6 (𝑁 = 0 → ((𝑁 · 𝐴) = 0 ↔ (0 · 𝐴) = 0 ))
2825, 27syl5ibrcom 249 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) = 0) → (𝑁 = 0 → (𝑁 · 𝐴) = 0 ))
292, 3, 4, 5odlem2 18669 . . . . . . . . . . . 12 ((𝐴𝑋𝑁 ∈ ℕ ∧ (𝑁 · 𝐴) = 0 ) → (𝑂𝐴) ∈ (1...𝑁))
30293com23 1122 . . . . . . . . . . 11 ((𝐴𝑋 ∧ (𝑁 · 𝐴) = 0𝑁 ∈ ℕ) → (𝑂𝐴) ∈ (1...𝑁))
31 elfznn 12939 . . . . . . . . . . 11 ((𝑂𝐴) ∈ (1...𝑁) → (𝑂𝐴) ∈ ℕ)
32 nnne0 11674 . . . . . . . . . . 11 ((𝑂𝐴) ∈ ℕ → (𝑂𝐴) ≠ 0)
3330, 31, 323syl 18 . . . . . . . . . 10 ((𝐴𝑋 ∧ (𝑁 · 𝐴) = 0𝑁 ∈ ℕ) → (𝑂𝐴) ≠ 0)
34333expia 1117 . . . . . . . . 9 ((𝐴𝑋 ∧ (𝑁 · 𝐴) = 0 ) → (𝑁 ∈ ℕ → (𝑂𝐴) ≠ 0))
35343ad2antl2 1182 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑁 · 𝐴) = 0 ) → (𝑁 ∈ ℕ → (𝑂𝐴) ≠ 0))
3635necon2bd 3034 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑁 · 𝐴) = 0 ) → ((𝑂𝐴) = 0 → ¬ 𝑁 ∈ ℕ))
37 simpl3 1189 . . . . . . . . 9 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑁 · 𝐴) = 0 ) → 𝑁 ∈ ℕ0)
38 elnn0 11902 . . . . . . . . 9 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
3937, 38sylib 220 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑁 · 𝐴) = 0 ) → (𝑁 ∈ ℕ ∨ 𝑁 = 0))
4039ord 860 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑁 · 𝐴) = 0 ) → (¬ 𝑁 ∈ ℕ → 𝑁 = 0))
4136, 40syld 47 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑁 · 𝐴) = 0 ) → ((𝑂𝐴) = 0 → 𝑁 = 0))
4241impancom 454 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) = 0) → ((𝑁 · 𝐴) = 0𝑁 = 0))
4328, 42impbid 214 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) = 0) → (𝑁 = 0 ↔ (𝑁 · 𝐴) = 0 ))
4420, 24, 433bitrd 307 . . 3 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) = 0) → ((𝑂𝐴) ∥ 𝑁 ↔ (𝑁 · 𝐴) = 0 ))
4544ex 415 . 2 ((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) → ((𝑂𝐴) = 0 → ((𝑂𝐴) ∥ 𝑁 ↔ (𝑁 · 𝐴) = 0 )))
462, 3odcl 18666 . . . 4 (𝐴𝑋 → (𝑂𝐴) ∈ ℕ0)
47463ad2ant2 1130 . . 3 ((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) → (𝑂𝐴) ∈ ℕ0)
48 elnn0 11902 . . 3 ((𝑂𝐴) ∈ ℕ0 ↔ ((𝑂𝐴) ∈ ℕ ∨ (𝑂𝐴) = 0))
4947, 48sylib 220 . 2 ((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) → ((𝑂𝐴) ∈ ℕ ∨ (𝑂𝐴) = 0))
5018, 45, 49mpjaod 856 1 ((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) → ((𝑂𝐴) ∥ 𝑁 ↔ (𝑁 · 𝐴) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1537  wcel 2114  wne 3018   class class class wbr 5068  cfv 6357  (class class class)co 7158  cc 10537  0cc0 10539  1c1 10540  cmin 10872  cn 11640  0cn0 11900  cz 11984  ...cfz 12895  cdvds 15609  Basecbs 16485  0gc0g 16715  Mndcmnd 17913  .gcmg 18226  odcod 18654
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-sup 8908  df-inf 8909  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-fz 12896  df-fl 13165  df-mod 13241  df-seq 13373  df-dvds 15610  df-0g 16717  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-mulg 18227  df-od 18658
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator