MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oddvdssubg Structured version   Visualization version   GIF version

Theorem oddvdssubg 18179
Description: The set of all elements whose order divides a fixed integer is a subgroup of any abelian group. (Contributed by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
torsubg.1 𝑂 = (od‘𝐺)
oddvdssubg.1 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
oddvdssubg ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) → {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ∈ (SubGrp‘𝐺))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐺   𝑥,𝑁   𝑥,𝑂

Proof of Theorem oddvdssubg
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 3666 . . 3 {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ⊆ 𝐵
21a1i 11 . 2 ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) → {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ⊆ 𝐵)
3 ablgrp 18119 . . . . . 6 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
43adantr 481 . . . . 5 ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) → 𝐺 ∈ Grp)
5 oddvdssubg.1 . . . . . 6 𝐵 = (Base‘𝐺)
6 eqid 2621 . . . . . 6 (0g𝐺) = (0g𝐺)
75, 6grpidcl 17371 . . . . 5 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝐵)
84, 7syl 17 . . . 4 ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) → (0g𝐺) ∈ 𝐵)
9 torsubg.1 . . . . . . 7 𝑂 = (od‘𝐺)
109, 6od1 17897 . . . . . 6 (𝐺 ∈ Grp → (𝑂‘(0g𝐺)) = 1)
114, 10syl 17 . . . . 5 ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) → (𝑂‘(0g𝐺)) = 1)
12 1dvds 14920 . . . . . 6 (𝑁 ∈ ℤ → 1 ∥ 𝑁)
1312adantl 482 . . . . 5 ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) → 1 ∥ 𝑁)
1411, 13eqbrtrd 4635 . . . 4 ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) → (𝑂‘(0g𝐺)) ∥ 𝑁)
15 fveq2 6148 . . . . . 6 (𝑥 = (0g𝐺) → (𝑂𝑥) = (𝑂‘(0g𝐺)))
1615breq1d 4623 . . . . 5 (𝑥 = (0g𝐺) → ((𝑂𝑥) ∥ 𝑁 ↔ (𝑂‘(0g𝐺)) ∥ 𝑁))
1716elrab 3346 . . . 4 ((0g𝐺) ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ↔ ((0g𝐺) ∈ 𝐵 ∧ (𝑂‘(0g𝐺)) ∥ 𝑁))
188, 14, 17sylanbrc 697 . . 3 ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) → (0g𝐺) ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁})
19 ne0i 3897 . . 3 ((0g𝐺) ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} → {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ≠ ∅)
2018, 19syl 17 . 2 ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) → {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ≠ ∅)
21 fveq2 6148 . . . . . 6 (𝑥 = 𝑦 → (𝑂𝑥) = (𝑂𝑦))
2221breq1d 4623 . . . . 5 (𝑥 = 𝑦 → ((𝑂𝑥) ∥ 𝑁 ↔ (𝑂𝑦) ∥ 𝑁))
2322elrab 3346 . . . 4 (𝑦 ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ↔ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁))
24 fveq2 6148 . . . . . . . . 9 (𝑥 = 𝑧 → (𝑂𝑥) = (𝑂𝑧))
2524breq1d 4623 . . . . . . . 8 (𝑥 = 𝑧 → ((𝑂𝑥) ∥ 𝑁 ↔ (𝑂𝑧) ∥ 𝑁))
2625elrab 3346 . . . . . . 7 (𝑧 ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ↔ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁))
274adantr 481 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) → 𝐺 ∈ Grp)
2827adantr 481 . . . . . . . . 9 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → 𝐺 ∈ Grp)
29 simprl 793 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) → 𝑦𝐵)
3029adantr 481 . . . . . . . . 9 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → 𝑦𝐵)
31 simprl 793 . . . . . . . . 9 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → 𝑧𝐵)
32 eqid 2621 . . . . . . . . . 10 (+g𝐺) = (+g𝐺)
335, 32grpcl 17351 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑦𝐵𝑧𝐵) → (𝑦(+g𝐺)𝑧) ∈ 𝐵)
3428, 30, 31, 33syl3anc 1323 . . . . . . . 8 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → (𝑦(+g𝐺)𝑧) ∈ 𝐵)
35 simplll 797 . . . . . . . . . . 11 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → 𝐺 ∈ Abel)
36 simpllr 798 . . . . . . . . . . 11 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → 𝑁 ∈ ℤ)
37 eqid 2621 . . . . . . . . . . . 12 (.g𝐺) = (.g𝐺)
385, 37, 32mulgdi 18153 . . . . . . . . . . 11 ((𝐺 ∈ Abel ∧ (𝑁 ∈ ℤ ∧ 𝑦𝐵𝑧𝐵)) → (𝑁(.g𝐺)(𝑦(+g𝐺)𝑧)) = ((𝑁(.g𝐺)𝑦)(+g𝐺)(𝑁(.g𝐺)𝑧)))
3935, 36, 30, 31, 38syl13anc 1325 . . . . . . . . . 10 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → (𝑁(.g𝐺)(𝑦(+g𝐺)𝑧)) = ((𝑁(.g𝐺)𝑦)(+g𝐺)(𝑁(.g𝐺)𝑧)))
40 simprr 795 . . . . . . . . . . . . 13 (((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) → (𝑂𝑦) ∥ 𝑁)
4140adantr 481 . . . . . . . . . . . 12 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → (𝑂𝑦) ∥ 𝑁)
425, 9, 37, 6oddvds 17887 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ 𝑦𝐵𝑁 ∈ ℤ) → ((𝑂𝑦) ∥ 𝑁 ↔ (𝑁(.g𝐺)𝑦) = (0g𝐺)))
4328, 30, 36, 42syl3anc 1323 . . . . . . . . . . . 12 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → ((𝑂𝑦) ∥ 𝑁 ↔ (𝑁(.g𝐺)𝑦) = (0g𝐺)))
4441, 43mpbid 222 . . . . . . . . . . 11 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → (𝑁(.g𝐺)𝑦) = (0g𝐺))
45 simprr 795 . . . . . . . . . . . 12 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → (𝑂𝑧) ∥ 𝑁)
465, 9, 37, 6oddvds 17887 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ 𝑧𝐵𝑁 ∈ ℤ) → ((𝑂𝑧) ∥ 𝑁 ↔ (𝑁(.g𝐺)𝑧) = (0g𝐺)))
4728, 31, 36, 46syl3anc 1323 . . . . . . . . . . . 12 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → ((𝑂𝑧) ∥ 𝑁 ↔ (𝑁(.g𝐺)𝑧) = (0g𝐺)))
4845, 47mpbid 222 . . . . . . . . . . 11 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → (𝑁(.g𝐺)𝑧) = (0g𝐺))
4944, 48oveq12d 6622 . . . . . . . . . 10 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → ((𝑁(.g𝐺)𝑦)(+g𝐺)(𝑁(.g𝐺)𝑧)) = ((0g𝐺)(+g𝐺)(0g𝐺)))
5028, 7syl 17 . . . . . . . . . . 11 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → (0g𝐺) ∈ 𝐵)
515, 32, 6grplid 17373 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (0g𝐺) ∈ 𝐵) → ((0g𝐺)(+g𝐺)(0g𝐺)) = (0g𝐺))
5228, 50, 51syl2anc 692 . . . . . . . . . 10 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → ((0g𝐺)(+g𝐺)(0g𝐺)) = (0g𝐺))
5339, 49, 523eqtrd 2659 . . . . . . . . 9 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → (𝑁(.g𝐺)(𝑦(+g𝐺)𝑧)) = (0g𝐺))
545, 9, 37, 6oddvds 17887 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (𝑦(+g𝐺)𝑧) ∈ 𝐵𝑁 ∈ ℤ) → ((𝑂‘(𝑦(+g𝐺)𝑧)) ∥ 𝑁 ↔ (𝑁(.g𝐺)(𝑦(+g𝐺)𝑧)) = (0g𝐺)))
5528, 34, 36, 54syl3anc 1323 . . . . . . . . 9 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → ((𝑂‘(𝑦(+g𝐺)𝑧)) ∥ 𝑁 ↔ (𝑁(.g𝐺)(𝑦(+g𝐺)𝑧)) = (0g𝐺)))
5653, 55mpbird 247 . . . . . . . 8 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → (𝑂‘(𝑦(+g𝐺)𝑧)) ∥ 𝑁)
57 fveq2 6148 . . . . . . . . . 10 (𝑥 = (𝑦(+g𝐺)𝑧) → (𝑂𝑥) = (𝑂‘(𝑦(+g𝐺)𝑧)))
5857breq1d 4623 . . . . . . . . 9 (𝑥 = (𝑦(+g𝐺)𝑧) → ((𝑂𝑥) ∥ 𝑁 ↔ (𝑂‘(𝑦(+g𝐺)𝑧)) ∥ 𝑁))
5958elrab 3346 . . . . . . . 8 ((𝑦(+g𝐺)𝑧) ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ↔ ((𝑦(+g𝐺)𝑧) ∈ 𝐵 ∧ (𝑂‘(𝑦(+g𝐺)𝑧)) ∥ 𝑁))
6034, 56, 59sylanbrc 697 . . . . . . 7 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → (𝑦(+g𝐺)𝑧) ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁})
6126, 60sylan2b 492 . . . . . 6 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ 𝑧 ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁}) → (𝑦(+g𝐺)𝑧) ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁})
6261ralrimiva 2960 . . . . 5 (((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) → ∀𝑧 ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} (𝑦(+g𝐺)𝑧) ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁})
63 eqid 2621 . . . . . . . 8 (invg𝐺) = (invg𝐺)
645, 63grpinvcl 17388 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑦𝐵) → ((invg𝐺)‘𝑦) ∈ 𝐵)
6527, 29, 64syl2anc 692 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) → ((invg𝐺)‘𝑦) ∈ 𝐵)
669, 63, 5odinv 17899 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑦𝐵) → (𝑂‘((invg𝐺)‘𝑦)) = (𝑂𝑦))
6727, 29, 66syl2anc 692 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) → (𝑂‘((invg𝐺)‘𝑦)) = (𝑂𝑦))
6867, 40eqbrtrd 4635 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) → (𝑂‘((invg𝐺)‘𝑦)) ∥ 𝑁)
69 fveq2 6148 . . . . . . . 8 (𝑥 = ((invg𝐺)‘𝑦) → (𝑂𝑥) = (𝑂‘((invg𝐺)‘𝑦)))
7069breq1d 4623 . . . . . . 7 (𝑥 = ((invg𝐺)‘𝑦) → ((𝑂𝑥) ∥ 𝑁 ↔ (𝑂‘((invg𝐺)‘𝑦)) ∥ 𝑁))
7170elrab 3346 . . . . . 6 (((invg𝐺)‘𝑦) ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ↔ (((invg𝐺)‘𝑦) ∈ 𝐵 ∧ (𝑂‘((invg𝐺)‘𝑦)) ∥ 𝑁))
7265, 68, 71sylanbrc 697 . . . . 5 (((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) → ((invg𝐺)‘𝑦) ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁})
7362, 72jca 554 . . . 4 (((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) → (∀𝑧 ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} (𝑦(+g𝐺)𝑧) ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ∧ ((invg𝐺)‘𝑦) ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁}))
7423, 73sylan2b 492 . . 3 (((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ 𝑦 ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁}) → (∀𝑧 ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} (𝑦(+g𝐺)𝑧) ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ∧ ((invg𝐺)‘𝑦) ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁}))
7574ralrimiva 2960 . 2 ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) → ∀𝑦 ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} (∀𝑧 ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} (𝑦(+g𝐺)𝑧) ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ∧ ((invg𝐺)‘𝑦) ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁}))
765, 32, 63issubg2 17530 . . 3 (𝐺 ∈ Grp → ({𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ∈ (SubGrp‘𝐺) ↔ ({𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ⊆ 𝐵 ∧ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ≠ ∅ ∧ ∀𝑦 ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} (∀𝑧 ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} (𝑦(+g𝐺)𝑧) ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ∧ ((invg𝐺)‘𝑦) ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁}))))
774, 76syl 17 . 2 ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) → ({𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ∈ (SubGrp‘𝐺) ↔ ({𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ⊆ 𝐵 ∧ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ≠ ∅ ∧ ∀𝑦 ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} (∀𝑧 ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} (𝑦(+g𝐺)𝑧) ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ∧ ((invg𝐺)‘𝑦) ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁}))))
782, 20, 75, 77mpbir3and 1243 1 ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) → {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ∈ (SubGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  wral 2907  {crab 2911  wss 3555  c0 3891   class class class wbr 4613  cfv 5847  (class class class)co 6604  1c1 9881  cz 11321  cdvds 14907  Basecbs 15781  +gcplusg 15862  0gc0g 16021  Grpcgrp 17343  invgcminusg 17344  .gcmg 17461  SubGrpcsubg 17509  odcod 17865  Abelcabl 18115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-sup 8292  df-inf 8293  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-n0 11237  df-z 11322  df-uz 11632  df-rp 11777  df-fz 12269  df-fzo 12407  df-fl 12533  df-mod 12609  df-seq 12742  df-exp 12801  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-dvds 14908  df-gcd 15141  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-0g 16023  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-grp 17346  df-minusg 17347  df-sbg 17348  df-mulg 17462  df-subg 17512  df-od 17869  df-cmn 18116  df-abl 18117
This theorem is referenced by:  ablfacrplem  18385  ablfacrp  18386  ablfacrp2  18387  ablfac1b  18390
  Copyright terms: Public domain W3C validator