![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > odf | Structured version Visualization version GIF version |
Description: Functionality of the group element order. (Contributed by Stefan O'Rear, 5-Sep-2015.) (Proof shortened by AV, 5-Oct-2020.) |
Ref | Expression |
---|---|
odcl.1 | ⊢ 𝑋 = (Base‘𝐺) |
odcl.2 | ⊢ 𝑂 = (od‘𝐺) |
Ref | Expression |
---|---|
odf | ⊢ 𝑂:𝑋⟶ℕ0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c0ex 10226 | . . . . 5 ⊢ 0 ∈ V | |
2 | ltso 10310 | . . . . . 6 ⊢ < Or ℝ | |
3 | 2 | infex 8564 | . . . . 5 ⊢ inf(𝑤, ℝ, < ) ∈ V |
4 | 1, 3 | ifex 4300 | . . . 4 ⊢ if(𝑤 = ∅, 0, inf(𝑤, ℝ, < )) ∈ V |
5 | 4 | csbex 4945 | . . 3 ⊢ ⦋{𝑧 ∈ ℕ ∣ (𝑧(.g‘𝐺)𝑦) = (0g‘𝐺)} / 𝑤⦌if(𝑤 = ∅, 0, inf(𝑤, ℝ, < )) ∈ V |
6 | odcl.1 | . . . 4 ⊢ 𝑋 = (Base‘𝐺) | |
7 | eqid 2760 | . . . 4 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
8 | eqid 2760 | . . . 4 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
9 | odcl.2 | . . . 4 ⊢ 𝑂 = (od‘𝐺) | |
10 | 6, 7, 8, 9 | odfval 18152 | . . 3 ⊢ 𝑂 = (𝑦 ∈ 𝑋 ↦ ⦋{𝑧 ∈ ℕ ∣ (𝑧(.g‘𝐺)𝑦) = (0g‘𝐺)} / 𝑤⦌if(𝑤 = ∅, 0, inf(𝑤, ℝ, < ))) |
11 | 5, 10 | fnmpti 6183 | . 2 ⊢ 𝑂 Fn 𝑋 |
12 | 6, 9 | odcl 18155 | . . 3 ⊢ (𝑥 ∈ 𝑋 → (𝑂‘𝑥) ∈ ℕ0) |
13 | 12 | rgen 3060 | . 2 ⊢ ∀𝑥 ∈ 𝑋 (𝑂‘𝑥) ∈ ℕ0 |
14 | ffnfv 6551 | . 2 ⊢ (𝑂:𝑋⟶ℕ0 ↔ (𝑂 Fn 𝑋 ∧ ∀𝑥 ∈ 𝑋 (𝑂‘𝑥) ∈ ℕ0)) | |
15 | 11, 13, 14 | mpbir2an 993 | 1 ⊢ 𝑂:𝑋⟶ℕ0 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1632 ∈ wcel 2139 ∀wral 3050 {crab 3054 ⦋csb 3674 ∅c0 4058 ifcif 4230 Fn wfn 6044 ⟶wf 6045 ‘cfv 6049 (class class class)co 6813 infcinf 8512 ℝcr 10127 0cc0 10128 < clt 10266 ℕcn 11212 ℕ0cn0 11484 Basecbs 16059 0gc0g 16302 .gcmg 17741 odcod 18144 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-fal 1638 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-om 7231 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-er 7911 df-en 8122 df-dom 8123 df-sdom 8124 df-sup 8513 df-inf 8514 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-nn 11213 df-n0 11485 df-z 11570 df-uz 11880 df-od 18148 |
This theorem is referenced by: gexex 18456 torsubg 18457 proot1mul 38279 proot1hash 38280 proot1ex 38281 |
Copyright terms: Public domain | W3C validator |