MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odf1 Structured version   Visualization version   GIF version

Theorem odf1 18683
Description: The multiples of an element with infinite order form an infinite cyclic subgroup of 𝐺. (Contributed by Mario Carneiro, 14-Jan-2015.) (Revised by Mario Carneiro, 23-Sep-2015.)
Hypotheses
Ref Expression
odf1.1 𝑋 = (Base‘𝐺)
odf1.2 𝑂 = (od‘𝐺)
odf1.3 · = (.g𝐺)
odf1.4 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴))
Assertion
Ref Expression
odf1 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((𝑂𝐴) = 0 ↔ 𝐹:ℤ–1-1𝑋))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐺   𝑥,𝑂   𝑥, ·   𝑥,𝑋
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem odf1
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 odf1.1 . . . . . . . 8 𝑋 = (Base‘𝐺)
2 odf1.3 . . . . . . . 8 · = (.g𝐺)
31, 2mulgcl 18239 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑥 ∈ ℤ ∧ 𝐴𝑋) → (𝑥 · 𝐴) ∈ 𝑋)
433expa 1114 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑥 ∈ ℤ) ∧ 𝐴𝑋) → (𝑥 · 𝐴) ∈ 𝑋)
54an32s 650 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑥 ∈ ℤ) → (𝑥 · 𝐴) ∈ 𝑋)
6 odf1.4 . . . . 5 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴))
75, 6fmptd 6872 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → 𝐹:ℤ⟶𝑋)
87adantr 483 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) = 0) → 𝐹:ℤ⟶𝑋)
9 oveq1 7157 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥 · 𝐴) = (𝑦 · 𝐴))
10 ovex 7183 . . . . . . . . 9 (𝑥 · 𝐴) ∈ V
119, 6, 10fvmpt3i 6767 . . . . . . . 8 (𝑦 ∈ ℤ → (𝐹𝑦) = (𝑦 · 𝐴))
12 oveq1 7157 . . . . . . . . 9 (𝑥 = 𝑧 → (𝑥 · 𝐴) = (𝑧 · 𝐴))
1312, 6, 10fvmpt3i 6767 . . . . . . . 8 (𝑧 ∈ ℤ → (𝐹𝑧) = (𝑧 · 𝐴))
1411, 13eqeqan12d 2838 . . . . . . 7 ((𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ) → ((𝐹𝑦) = (𝐹𝑧) ↔ (𝑦 · 𝐴) = (𝑧 · 𝐴)))
1514adantl 484 . . . . . 6 ((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) = 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝐹𝑦) = (𝐹𝑧) ↔ (𝑦 · 𝐴) = (𝑧 · 𝐴)))
16 simplr 767 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) = 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (𝑂𝐴) = 0)
1716breq1d 5068 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) = 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝑂𝐴) ∥ (𝑦𝑧) ↔ 0 ∥ (𝑦𝑧)))
18 odf1.2 . . . . . . . . 9 𝑂 = (od‘𝐺)
19 eqid 2821 . . . . . . . . 9 (0g𝐺) = (0g𝐺)
201, 18, 2, 19odcong 18671 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝑂𝐴) ∥ (𝑦𝑧) ↔ (𝑦 · 𝐴) = (𝑧 · 𝐴)))
2120ad4ant124 1169 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) = 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝑂𝐴) ∥ (𝑦𝑧) ↔ (𝑦 · 𝐴) = (𝑧 · 𝐴)))
22 zsubcl 12018 . . . . . . . . 9 ((𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (𝑦𝑧) ∈ ℤ)
2322adantl 484 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) = 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (𝑦𝑧) ∈ ℤ)
24 0dvds 15624 . . . . . . . 8 ((𝑦𝑧) ∈ ℤ → (0 ∥ (𝑦𝑧) ↔ (𝑦𝑧) = 0))
2523, 24syl 17 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) = 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (0 ∥ (𝑦𝑧) ↔ (𝑦𝑧) = 0))
2617, 21, 253bitr3d 311 . . . . . 6 ((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) = 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝑦 · 𝐴) = (𝑧 · 𝐴) ↔ (𝑦𝑧) = 0))
27 zcn 11980 . . . . . . . 8 (𝑦 ∈ ℤ → 𝑦 ∈ ℂ)
28 zcn 11980 . . . . . . . 8 (𝑧 ∈ ℤ → 𝑧 ∈ ℂ)
29 subeq0 10906 . . . . . . . 8 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑦𝑧) = 0 ↔ 𝑦 = 𝑧))
3027, 28, 29syl2an 597 . . . . . . 7 ((𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ) → ((𝑦𝑧) = 0 ↔ 𝑦 = 𝑧))
3130adantl 484 . . . . . 6 ((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) = 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝑦𝑧) = 0 ↔ 𝑦 = 𝑧))
3215, 26, 313bitrd 307 . . . . 5 ((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) = 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝐹𝑦) = (𝐹𝑧) ↔ 𝑦 = 𝑧))
3332biimpd 231 . . . 4 ((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) = 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧))
3433ralrimivva 3191 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) = 0) → ∀𝑦 ∈ ℤ ∀𝑧 ∈ ℤ ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧))
35 dff13 7007 . . 3 (𝐹:ℤ–1-1𝑋 ↔ (𝐹:ℤ⟶𝑋 ∧ ∀𝑦 ∈ ℤ ∀𝑧 ∈ ℤ ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧)))
368, 34, 35sylanbrc 585 . 2 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) = 0) → 𝐹:ℤ–1-1𝑋)
371, 18, 2, 19odid 18660 . . . . . 6 (𝐴𝑋 → ((𝑂𝐴) · 𝐴) = (0g𝐺))
381, 19, 2mulg0 18225 . . . . . 6 (𝐴𝑋 → (0 · 𝐴) = (0g𝐺))
3937, 38eqtr4d 2859 . . . . 5 (𝐴𝑋 → ((𝑂𝐴) · 𝐴) = (0 · 𝐴))
4039ad2antlr 725 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝐹:ℤ–1-1𝑋) → ((𝑂𝐴) · 𝐴) = (0 · 𝐴))
411, 18odcl 18658 . . . . . . 7 (𝐴𝑋 → (𝑂𝐴) ∈ ℕ0)
4241ad2antlr 725 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝐹:ℤ–1-1𝑋) → (𝑂𝐴) ∈ ℕ0)
4342nn0zd 12079 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝐹:ℤ–1-1𝑋) → (𝑂𝐴) ∈ ℤ)
44 oveq1 7157 . . . . . 6 (𝑥 = (𝑂𝐴) → (𝑥 · 𝐴) = ((𝑂𝐴) · 𝐴))
4544, 6, 10fvmpt3i 6767 . . . . 5 ((𝑂𝐴) ∈ ℤ → (𝐹‘(𝑂𝐴)) = ((𝑂𝐴) · 𝐴))
4643, 45syl 17 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝐹:ℤ–1-1𝑋) → (𝐹‘(𝑂𝐴)) = ((𝑂𝐴) · 𝐴))
47 0zd 11987 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝐹:ℤ–1-1𝑋) → 0 ∈ ℤ)
48 oveq1 7157 . . . . . 6 (𝑥 = 0 → (𝑥 · 𝐴) = (0 · 𝐴))
4948, 6, 10fvmpt3i 6767 . . . . 5 (0 ∈ ℤ → (𝐹‘0) = (0 · 𝐴))
5047, 49syl 17 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝐹:ℤ–1-1𝑋) → (𝐹‘0) = (0 · 𝐴))
5140, 46, 503eqtr4d 2866 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝐹:ℤ–1-1𝑋) → (𝐹‘(𝑂𝐴)) = (𝐹‘0))
52 simpr 487 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝐹:ℤ–1-1𝑋) → 𝐹:ℤ–1-1𝑋)
53 f1fveq 7014 . . . 4 ((𝐹:ℤ–1-1𝑋 ∧ ((𝑂𝐴) ∈ ℤ ∧ 0 ∈ ℤ)) → ((𝐹‘(𝑂𝐴)) = (𝐹‘0) ↔ (𝑂𝐴) = 0))
5452, 43, 47, 53syl12anc 834 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝐹:ℤ–1-1𝑋) → ((𝐹‘(𝑂𝐴)) = (𝐹‘0) ↔ (𝑂𝐴) = 0))
5551, 54mpbid 234 . 2 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝐹:ℤ–1-1𝑋) → (𝑂𝐴) = 0)
5636, 55impbida 799 1 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((𝑂𝐴) = 0 ↔ 𝐹:ℤ–1-1𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wral 3138   class class class wbr 5058  cmpt 5138  wf 6345  1-1wf1 6346  cfv 6349  (class class class)co 7150  cc 10529  0cc0 10531  cmin 10864  0cn0 11891  cz 11975  cdvds 15601  Basecbs 16477  0gc0g 16707  Grpcgrp 18097  .gcmg 18218  odcod 18646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-sup 8900  df-inf 8901  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-fz 12887  df-fl 13156  df-mod 13232  df-seq 13364  df-exp 13424  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-dvds 15602  df-0g 16709  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-grp 18100  df-minusg 18101  df-sbg 18102  df-mulg 18219  df-od 18650
This theorem is referenced by:  odinf  18684  odcl2  18686  zrhchr  31212
  Copyright terms: Public domain W3C validator