MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odf1o1 Structured version   Visualization version   GIF version

Theorem odf1o1 18699
Description: An element with zero order has infinitely many multiples. (Contributed by Stefan O'Rear, 6-Sep-2015.)
Hypotheses
Ref Expression
odf1o1.x 𝑋 = (Base‘𝐺)
odf1o1.t · = (.g𝐺)
odf1o1.o 𝑂 = (od‘𝐺)
odf1o1.k 𝐾 = (mrCls‘(SubGrp‘𝐺))
Assertion
Ref Expression
odf1o1 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) → (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)):ℤ–1-1-onto→(𝐾‘{𝐴}))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐺   𝑥,𝐾   𝑥,𝑂   𝑥, ·   𝑥,𝑋

Proof of Theorem odf1o1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1187 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) ∧ 𝑥 ∈ ℤ) → 𝐺 ∈ Grp)
2 odf1o1.x . . . . . . . 8 𝑋 = (Base‘𝐺)
32subgacs 18315 . . . . . . 7 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘𝑋))
4 acsmre 16925 . . . . . . 7 ((SubGrp‘𝐺) ∈ (ACS‘𝑋) → (SubGrp‘𝐺) ∈ (Moore‘𝑋))
51, 3, 43syl 18 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) ∧ 𝑥 ∈ ℤ) → (SubGrp‘𝐺) ∈ (Moore‘𝑋))
6 simpl2 1188 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) ∧ 𝑥 ∈ ℤ) → 𝐴𝑋)
76snssd 4744 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) ∧ 𝑥 ∈ ℤ) → {𝐴} ⊆ 𝑋)
8 odf1o1.k . . . . . . 7 𝐾 = (mrCls‘(SubGrp‘𝐺))
98mrccl 16884 . . . . . 6 (((SubGrp‘𝐺) ∈ (Moore‘𝑋) ∧ {𝐴} ⊆ 𝑋) → (𝐾‘{𝐴}) ∈ (SubGrp‘𝐺))
105, 7, 9syl2anc 586 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) ∧ 𝑥 ∈ ℤ) → (𝐾‘{𝐴}) ∈ (SubGrp‘𝐺))
11 simpr 487 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℤ)
125, 8, 7mrcssidd 16898 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) ∧ 𝑥 ∈ ℤ) → {𝐴} ⊆ (𝐾‘{𝐴}))
13 snidg 4601 . . . . . . 7 (𝐴𝑋𝐴 ∈ {𝐴})
146, 13syl 17 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) ∧ 𝑥 ∈ ℤ) → 𝐴 ∈ {𝐴})
1512, 14sseldd 3970 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) ∧ 𝑥 ∈ ℤ) → 𝐴 ∈ (𝐾‘{𝐴}))
16 odf1o1.t . . . . . 6 · = (.g𝐺)
1716subgmulgcl 18294 . . . . 5 (((𝐾‘{𝐴}) ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ ℤ ∧ 𝐴 ∈ (𝐾‘{𝐴})) → (𝑥 · 𝐴) ∈ (𝐾‘{𝐴}))
1810, 11, 15, 17syl3anc 1367 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) ∧ 𝑥 ∈ ℤ) → (𝑥 · 𝐴) ∈ (𝐾‘{𝐴}))
1918ex 415 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) → (𝑥 ∈ ℤ → (𝑥 · 𝐴) ∈ (𝐾‘{𝐴})))
20 simpl3 1189 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑂𝐴) = 0)
2120breq1d 5078 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑂𝐴) ∥ (𝑥𝑦) ↔ 0 ∥ (𝑥𝑦)))
22 zsubcl 12027 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥𝑦) ∈ ℤ)
2322adantl 484 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥𝑦) ∈ ℤ)
24 0dvds 15632 . . . . . . 7 ((𝑥𝑦) ∈ ℤ → (0 ∥ (𝑥𝑦) ↔ (𝑥𝑦) = 0))
2523, 24syl 17 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (0 ∥ (𝑥𝑦) ↔ (𝑥𝑦) = 0))
2621, 25bitrd 281 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑂𝐴) ∥ (𝑥𝑦) ↔ (𝑥𝑦) = 0))
27 simpl1 1187 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐺 ∈ Grp)
28 simpl2 1188 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐴𝑋)
29 simprl 769 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑥 ∈ ℤ)
30 simprr 771 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑦 ∈ ℤ)
31 odf1o1.o . . . . . . 7 𝑂 = (od‘𝐺)
32 eqid 2823 . . . . . . 7 (0g𝐺) = (0g𝐺)
332, 31, 16, 32odcong 18679 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑂𝐴) ∥ (𝑥𝑦) ↔ (𝑥 · 𝐴) = (𝑦 · 𝐴)))
3427, 28, 29, 30, 33syl112anc 1370 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑂𝐴) ∥ (𝑥𝑦) ↔ (𝑥 · 𝐴) = (𝑦 · 𝐴)))
35 zcn 11989 . . . . . . 7 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
36 zcn 11989 . . . . . . 7 (𝑦 ∈ ℤ → 𝑦 ∈ ℂ)
37 subeq0 10914 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑥𝑦) = 0 ↔ 𝑥 = 𝑦))
3835, 36, 37syl2an 597 . . . . . 6 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝑥𝑦) = 0 ↔ 𝑥 = 𝑦))
3938adantl 484 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥𝑦) = 0 ↔ 𝑥 = 𝑦))
4026, 34, 393bitr3d 311 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · 𝐴) = (𝑦 · 𝐴) ↔ 𝑥 = 𝑦))
4140ex 415 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) → ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝑥 · 𝐴) = (𝑦 · 𝐴) ↔ 𝑥 = 𝑦)))
4219, 41dom2lem 8551 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) → (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)):ℤ–1-1→(𝐾‘{𝐴}))
4318fmpttd 6881 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) → (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)):ℤ⟶(𝐾‘{𝐴}))
44 eqid 2823 . . . . . 6 (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) = (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴))
452, 16, 44, 8cycsubg2 18355 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝐾‘{𝐴}) = ran (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)))
46453adant3 1128 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) → (𝐾‘{𝐴}) = ran (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)))
4746eqcomd 2829 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) → ran (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) = (𝐾‘{𝐴}))
48 dffo2 6596 . . 3 ((𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)):ℤ–onto→(𝐾‘{𝐴}) ↔ ((𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)):ℤ⟶(𝐾‘{𝐴}) ∧ ran (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) = (𝐾‘{𝐴})))
4943, 47, 48sylanbrc 585 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) → (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)):ℤ–onto→(𝐾‘{𝐴}))
50 df-f1o 6364 . 2 ((𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)):ℤ–1-1-onto→(𝐾‘{𝐴}) ↔ ((𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)):ℤ–1-1→(𝐾‘{𝐴}) ∧ (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)):ℤ–onto→(𝐾‘{𝐴})))
5142, 49, 50sylanbrc 585 1 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) → (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)):ℤ–1-1-onto→(𝐾‘{𝐴}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wss 3938  {csn 4569   class class class wbr 5068  cmpt 5148  ran crn 5558  wf 6353  1-1wf1 6354  ontowfo 6355  1-1-ontowf1o 6356  cfv 6357  (class class class)co 7158  cc 10537  0cc0 10539  cmin 10872  cz 11984  cdvds 15609  Basecbs 16485  0gc0g 16715  Moorecmre 16855  mrClscmrc 16856  ACScacs 16858  Grpcgrp 18105  .gcmg 18226  SubGrpcsubg 18275  odcod 18654
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-inf 8909  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-fz 12896  df-fl 13165  df-mod 13241  df-seq 13373  df-exp 13433  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-dvds 15610  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-0g 16717  df-mre 16859  df-mrc 16860  df-acs 16862  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-submnd 17959  df-grp 18108  df-minusg 18109  df-sbg 18110  df-mulg 18227  df-subg 18278  df-od 18658
This theorem is referenced by:  odhash  18701
  Copyright terms: Public domain W3C validator