Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  odf1o1 Structured version   Visualization version   GIF version

Theorem odf1o1 17908
 Description: An element with zero order has infinitely many multiples. (Contributed by Stefan O'Rear, 6-Sep-2015.)
Hypotheses
Ref Expression
odf1o1.x 𝑋 = (Base‘𝐺)
odf1o1.t · = (.g𝐺)
odf1o1.o 𝑂 = (od‘𝐺)
odf1o1.k 𝐾 = (mrCls‘(SubGrp‘𝐺))
Assertion
Ref Expression
odf1o1 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) → (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)):ℤ–1-1-onto→(𝐾‘{𝐴}))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐺   𝑥,𝐾   𝑥,𝑂   𝑥, ·   𝑥,𝑋

Proof of Theorem odf1o1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1062 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) ∧ 𝑥 ∈ ℤ) → 𝐺 ∈ Grp)
2 odf1o1.x . . . . . . . 8 𝑋 = (Base‘𝐺)
32subgacs 17550 . . . . . . 7 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘𝑋))
4 acsmre 16234 . . . . . . 7 ((SubGrp‘𝐺) ∈ (ACS‘𝑋) → (SubGrp‘𝐺) ∈ (Moore‘𝑋))
51, 3, 43syl 18 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) ∧ 𝑥 ∈ ℤ) → (SubGrp‘𝐺) ∈ (Moore‘𝑋))
6 simpl2 1063 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) ∧ 𝑥 ∈ ℤ) → 𝐴𝑋)
76snssd 4309 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) ∧ 𝑥 ∈ ℤ) → {𝐴} ⊆ 𝑋)
8 odf1o1.k . . . . . . 7 𝐾 = (mrCls‘(SubGrp‘𝐺))
98mrccl 16192 . . . . . 6 (((SubGrp‘𝐺) ∈ (Moore‘𝑋) ∧ {𝐴} ⊆ 𝑋) → (𝐾‘{𝐴}) ∈ (SubGrp‘𝐺))
105, 7, 9syl2anc 692 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) ∧ 𝑥 ∈ ℤ) → (𝐾‘{𝐴}) ∈ (SubGrp‘𝐺))
11 simpr 477 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℤ)
125, 8, 7mrcssidd 16206 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) ∧ 𝑥 ∈ ℤ) → {𝐴} ⊆ (𝐾‘{𝐴}))
13 snidg 4177 . . . . . . 7 (𝐴𝑋𝐴 ∈ {𝐴})
146, 13syl 17 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) ∧ 𝑥 ∈ ℤ) → 𝐴 ∈ {𝐴})
1512, 14sseldd 3584 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) ∧ 𝑥 ∈ ℤ) → 𝐴 ∈ (𝐾‘{𝐴}))
16 odf1o1.t . . . . . 6 · = (.g𝐺)
1716subgmulgcl 17528 . . . . 5 (((𝐾‘{𝐴}) ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ ℤ ∧ 𝐴 ∈ (𝐾‘{𝐴})) → (𝑥 · 𝐴) ∈ (𝐾‘{𝐴}))
1810, 11, 15, 17syl3anc 1323 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) ∧ 𝑥 ∈ ℤ) → (𝑥 · 𝐴) ∈ (𝐾‘{𝐴}))
1918ex 450 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) → (𝑥 ∈ ℤ → (𝑥 · 𝐴) ∈ (𝐾‘{𝐴})))
20 simpl3 1064 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑂𝐴) = 0)
2120breq1d 4623 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑂𝐴) ∥ (𝑥𝑦) ↔ 0 ∥ (𝑥𝑦)))
22 zsubcl 11363 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥𝑦) ∈ ℤ)
2322adantl 482 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥𝑦) ∈ ℤ)
24 0dvds 14926 . . . . . . 7 ((𝑥𝑦) ∈ ℤ → (0 ∥ (𝑥𝑦) ↔ (𝑥𝑦) = 0))
2523, 24syl 17 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (0 ∥ (𝑥𝑦) ↔ (𝑥𝑦) = 0))
2621, 25bitrd 268 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑂𝐴) ∥ (𝑥𝑦) ↔ (𝑥𝑦) = 0))
27 simpl1 1062 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐺 ∈ Grp)
28 simpl2 1063 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐴𝑋)
29 simprl 793 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑥 ∈ ℤ)
30 simprr 795 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑦 ∈ ℤ)
31 odf1o1.o . . . . . . 7 𝑂 = (od‘𝐺)
32 eqid 2621 . . . . . . 7 (0g𝐺) = (0g𝐺)
332, 31, 16, 32odcong 17889 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑂𝐴) ∥ (𝑥𝑦) ↔ (𝑥 · 𝐴) = (𝑦 · 𝐴)))
3427, 28, 29, 30, 33syl112anc 1327 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑂𝐴) ∥ (𝑥𝑦) ↔ (𝑥 · 𝐴) = (𝑦 · 𝐴)))
35 zcn 11326 . . . . . . 7 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
36 zcn 11326 . . . . . . 7 (𝑦 ∈ ℤ → 𝑦 ∈ ℂ)
37 subeq0 10251 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑥𝑦) = 0 ↔ 𝑥 = 𝑦))
3835, 36, 37syl2an 494 . . . . . 6 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝑥𝑦) = 0 ↔ 𝑥 = 𝑦))
3938adantl 482 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥𝑦) = 0 ↔ 𝑥 = 𝑦))
4026, 34, 393bitr3d 298 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · 𝐴) = (𝑦 · 𝐴) ↔ 𝑥 = 𝑦))
4140ex 450 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) → ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝑥 · 𝐴) = (𝑦 · 𝐴) ↔ 𝑥 = 𝑦)))
4219, 41dom2lem 7939 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) → (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)):ℤ–1-1→(𝐾‘{𝐴}))
43 f1f 6058 . . . 4 ((𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)):ℤ–1-1→(𝐾‘{𝐴}) → (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)):ℤ⟶(𝐾‘{𝐴}))
4442, 43syl 17 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) → (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)):ℤ⟶(𝐾‘{𝐴}))
45 eqid 2621 . . . . . 6 (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) = (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴))
462, 16, 45, 8cycsubg2 17552 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝐾‘{𝐴}) = ran (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)))
47463adant3 1079 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) → (𝐾‘{𝐴}) = ran (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)))
4847eqcomd 2627 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) → ran (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) = (𝐾‘{𝐴}))
49 dffo2 6076 . . 3 ((𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)):ℤ–onto→(𝐾‘{𝐴}) ↔ ((𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)):ℤ⟶(𝐾‘{𝐴}) ∧ ran (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) = (𝐾‘{𝐴})))
5044, 48, 49sylanbrc 697 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) → (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)):ℤ–onto→(𝐾‘{𝐴}))
51 df-f1o 5854 . 2 ((𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)):ℤ–1-1-onto→(𝐾‘{𝐴}) ↔ ((𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)):ℤ–1-1→(𝐾‘{𝐴}) ∧ (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)):ℤ–onto→(𝐾‘{𝐴})))
5242, 50, 51sylanbrc 697 1 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) → (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)):ℤ–1-1-onto→(𝐾‘{𝐴}))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384   ∧ w3a 1036   = wceq 1480   ∈ wcel 1987   ⊆ wss 3555  {csn 4148   class class class wbr 4613   ↦ cmpt 4673  ran crn 5075  ⟶wf 5843  –1-1→wf1 5844  –onto→wfo 5845  –1-1-onto→wf1o 5846  ‘cfv 5847  (class class class)co 6604  ℂcc 9878  0cc0 9880   − cmin 10210  ℤcz 11321   ∥ cdvds 14907  Basecbs 15781  0gc0g 16021  Moorecmre 16163  mrClscmrc 16164  ACScacs 16166  Grpcgrp 17343  .gcmg 17461  SubGrpcsubg 17509  odcod 17865 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-sup 8292  df-inf 8293  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-n0 11237  df-z 11322  df-uz 11632  df-rp 11777  df-fz 12269  df-fl 12533  df-mod 12609  df-seq 12742  df-exp 12801  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-dvds 14908  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-0g 16023  df-mre 16167  df-mrc 16168  df-acs 16170  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-submnd 17257  df-grp 17346  df-minusg 17347  df-sbg 17348  df-mulg 17462  df-subg 17512  df-od 17869 This theorem is referenced by:  odhash  17910
 Copyright terms: Public domain W3C validator