MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odlem1 Structured version   Visualization version   GIF version

Theorem odlem1 17870
Description: The group element order is either zero or a nonzero multiplier that annihilates the element. (Contributed by Mario Carneiro, 14-Jan-2015.) (Revised by Stefan O'Rear, 5-Sep-2015.) (Revised by AV, 5-Oct-2020.)
Hypotheses
Ref Expression
odval.1 𝑋 = (Base‘𝐺)
odval.2 · = (.g𝐺)
odval.3 0 = (0g𝐺)
odval.4 𝑂 = (od‘𝐺)
odval.i 𝐼 = {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }
Assertion
Ref Expression
odlem1 (𝐴𝑋 → (((𝑂𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂𝐴) ∈ 𝐼))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐺   𝑦, ·   𝑦, 0
Allowed substitution hints:   𝐼(𝑦)   𝑂(𝑦)   𝑋(𝑦)

Proof of Theorem odlem1
StepHypRef Expression
1 odval.1 . . 3 𝑋 = (Base‘𝐺)
2 odval.2 . . 3 · = (.g𝐺)
3 odval.3 . . 3 0 = (0g𝐺)
4 odval.4 . . 3 𝑂 = (od‘𝐺)
5 odval.i . . 3 𝐼 = {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }
61, 2, 3, 4, 5odval 17869 . 2 (𝐴𝑋 → (𝑂𝐴) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )))
7 eqeq2 2637 . . . 4 (0 = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → ((𝑂𝐴) = 0 ↔ (𝑂𝐴) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < ))))
87imbi1d 331 . . 3 (0 = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → (((𝑂𝐴) = 0 → (((𝑂𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂𝐴) ∈ 𝐼)) ↔ ((𝑂𝐴) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → (((𝑂𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂𝐴) ∈ 𝐼))))
9 eqeq2 2637 . . . 4 (inf(𝐼, ℝ, < ) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → ((𝑂𝐴) = inf(𝐼, ℝ, < ) ↔ (𝑂𝐴) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < ))))
109imbi1d 331 . . 3 (inf(𝐼, ℝ, < ) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → (((𝑂𝐴) = inf(𝐼, ℝ, < ) → (((𝑂𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂𝐴) ∈ 𝐼)) ↔ ((𝑂𝐴) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → (((𝑂𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂𝐴) ∈ 𝐼))))
11 orc 400 . . . . 5 (((𝑂𝐴) = 0 ∧ 𝐼 = ∅) → (((𝑂𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂𝐴) ∈ 𝐼))
1211expcom 451 . . . 4 (𝐼 = ∅ → ((𝑂𝐴) = 0 → (((𝑂𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂𝐴) ∈ 𝐼)))
1312adantl 482 . . 3 ((𝐴𝑋𝐼 = ∅) → ((𝑂𝐴) = 0 → (((𝑂𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂𝐴) ∈ 𝐼)))
14 ssrab2 3671 . . . . . . 7 {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } ⊆ ℕ
15 nnuz 11667 . . . . . . . 8 ℕ = (ℤ‘1)
1615eqcomi 2635 . . . . . . 7 (ℤ‘1) = ℕ
1714, 5, 163sstr4i 3628 . . . . . 6 𝐼 ⊆ (ℤ‘1)
18 df-ne 2797 . . . . . . . 8 (𝐼 ≠ ∅ ↔ ¬ 𝐼 = ∅)
1918biimpri 218 . . . . . . 7 𝐼 = ∅ → 𝐼 ≠ ∅)
2019adantl 482 . . . . . 6 ((𝐴𝑋 ∧ ¬ 𝐼 = ∅) → 𝐼 ≠ ∅)
21 infssuzcl 11716 . . . . . 6 ((𝐼 ⊆ (ℤ‘1) ∧ 𝐼 ≠ ∅) → inf(𝐼, ℝ, < ) ∈ 𝐼)
2217, 20, 21sylancr 694 . . . . 5 ((𝐴𝑋 ∧ ¬ 𝐼 = ∅) → inf(𝐼, ℝ, < ) ∈ 𝐼)
23 eleq1a 2699 . . . . 5 (inf(𝐼, ℝ, < ) ∈ 𝐼 → ((𝑂𝐴) = inf(𝐼, ℝ, < ) → (𝑂𝐴) ∈ 𝐼))
2422, 23syl 17 . . . 4 ((𝐴𝑋 ∧ ¬ 𝐼 = ∅) → ((𝑂𝐴) = inf(𝐼, ℝ, < ) → (𝑂𝐴) ∈ 𝐼))
25 olc 399 . . . 4 ((𝑂𝐴) ∈ 𝐼 → (((𝑂𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂𝐴) ∈ 𝐼))
2624, 25syl6 35 . . 3 ((𝐴𝑋 ∧ ¬ 𝐼 = ∅) → ((𝑂𝐴) = inf(𝐼, ℝ, < ) → (((𝑂𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂𝐴) ∈ 𝐼)))
278, 10, 13, 26ifbothda 4100 . 2 (𝐴𝑋 → ((𝑂𝐴) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → (((𝑂𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂𝐴) ∈ 𝐼)))
286, 27mpd 15 1 (𝐴𝑋 → (((𝑂𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂𝐴) ∈ 𝐼))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 383  wa 384   = wceq 1480  wcel 1992  wne 2796  {crab 2916  wss 3560  c0 3896  ifcif 4063  cfv 5850  (class class class)co 6605  infcinf 8292  cr 9880  0cc0 9881  1c1 9882   < clt 10019  cn 10965  cuz 11631  Basecbs 15776  0gc0g 16016  .gcmg 17456  odcod 17860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-er 7688  df-en 7901  df-dom 7902  df-sdom 7903  df-sup 8293  df-inf 8294  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-nn 10966  df-n0 11238  df-z 11323  df-uz 11632  df-od 17864
This theorem is referenced by:  odcl  17871  odid  17873
  Copyright terms: Public domain W3C validator