Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  odlem1 Structured version   Visualization version   GIF version

Theorem odlem1 18000
 Description: The group element order is either zero or a nonzero multiplier that annihilates the element. (Contributed by Mario Carneiro, 14-Jan-2015.) (Revised by Stefan O'Rear, 5-Sep-2015.) (Revised by AV, 5-Oct-2020.)
Hypotheses
Ref Expression
odval.1 𝑋 = (Base‘𝐺)
odval.2 · = (.g𝐺)
odval.3 0 = (0g𝐺)
odval.4 𝑂 = (od‘𝐺)
odval.i 𝐼 = {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }
Assertion
Ref Expression
odlem1 (𝐴𝑋 → (((𝑂𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂𝐴) ∈ 𝐼))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐺   𝑦, ·   𝑦, 0
Allowed substitution hints:   𝐼(𝑦)   𝑂(𝑦)   𝑋(𝑦)

Proof of Theorem odlem1
StepHypRef Expression
1 odval.1 . . 3 𝑋 = (Base‘𝐺)
2 odval.2 . . 3 · = (.g𝐺)
3 odval.3 . . 3 0 = (0g𝐺)
4 odval.4 . . 3 𝑂 = (od‘𝐺)
5 odval.i . . 3 𝐼 = {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }
61, 2, 3, 4, 5odval 17999 . 2 (𝐴𝑋 → (𝑂𝐴) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )))
7 eqeq2 2662 . . . 4 (0 = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → ((𝑂𝐴) = 0 ↔ (𝑂𝐴) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < ))))
87imbi1d 330 . . 3 (0 = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → (((𝑂𝐴) = 0 → (((𝑂𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂𝐴) ∈ 𝐼)) ↔ ((𝑂𝐴) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → (((𝑂𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂𝐴) ∈ 𝐼))))
9 eqeq2 2662 . . . 4 (inf(𝐼, ℝ, < ) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → ((𝑂𝐴) = inf(𝐼, ℝ, < ) ↔ (𝑂𝐴) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < ))))
109imbi1d 330 . . 3 (inf(𝐼, ℝ, < ) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → (((𝑂𝐴) = inf(𝐼, ℝ, < ) → (((𝑂𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂𝐴) ∈ 𝐼)) ↔ ((𝑂𝐴) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → (((𝑂𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂𝐴) ∈ 𝐼))))
11 orc 399 . . . . 5 (((𝑂𝐴) = 0 ∧ 𝐼 = ∅) → (((𝑂𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂𝐴) ∈ 𝐼))
1211expcom 450 . . . 4 (𝐼 = ∅ → ((𝑂𝐴) = 0 → (((𝑂𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂𝐴) ∈ 𝐼)))
1312adantl 481 . . 3 ((𝐴𝑋𝐼 = ∅) → ((𝑂𝐴) = 0 → (((𝑂𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂𝐴) ∈ 𝐼)))
14 ssrab2 3720 . . . . . . 7 {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } ⊆ ℕ
15 nnuz 11761 . . . . . . . 8 ℕ = (ℤ‘1)
1615eqcomi 2660 . . . . . . 7 (ℤ‘1) = ℕ
1714, 5, 163sstr4i 3677 . . . . . 6 𝐼 ⊆ (ℤ‘1)
18 df-ne 2824 . . . . . . . 8 (𝐼 ≠ ∅ ↔ ¬ 𝐼 = ∅)
1918biimpri 218 . . . . . . 7 𝐼 = ∅ → 𝐼 ≠ ∅)
2019adantl 481 . . . . . 6 ((𝐴𝑋 ∧ ¬ 𝐼 = ∅) → 𝐼 ≠ ∅)
21 infssuzcl 11810 . . . . . 6 ((𝐼 ⊆ (ℤ‘1) ∧ 𝐼 ≠ ∅) → inf(𝐼, ℝ, < ) ∈ 𝐼)
2217, 20, 21sylancr 696 . . . . 5 ((𝐴𝑋 ∧ ¬ 𝐼 = ∅) → inf(𝐼, ℝ, < ) ∈ 𝐼)
23 eleq1a 2725 . . . . 5 (inf(𝐼, ℝ, < ) ∈ 𝐼 → ((𝑂𝐴) = inf(𝐼, ℝ, < ) → (𝑂𝐴) ∈ 𝐼))
2422, 23syl 17 . . . 4 ((𝐴𝑋 ∧ ¬ 𝐼 = ∅) → ((𝑂𝐴) = inf(𝐼, ℝ, < ) → (𝑂𝐴) ∈ 𝐼))
25 olc 398 . . . 4 ((𝑂𝐴) ∈ 𝐼 → (((𝑂𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂𝐴) ∈ 𝐼))
2624, 25syl6 35 . . 3 ((𝐴𝑋 ∧ ¬ 𝐼 = ∅) → ((𝑂𝐴) = inf(𝐼, ℝ, < ) → (((𝑂𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂𝐴) ∈ 𝐼)))
278, 10, 13, 26ifbothda 4156 . 2 (𝐴𝑋 → ((𝑂𝐴) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → (((𝑂𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂𝐴) ∈ 𝐼)))
286, 27mpd 15 1 (𝐴𝑋 → (((𝑂𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂𝐴) ∈ 𝐼))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∨ wo 382   ∧ wa 383   = wceq 1523   ∈ wcel 2030   ≠ wne 2823  {crab 2945   ⊆ wss 3607  ∅c0 3948  ifcif 4119  ‘cfv 5926  (class class class)co 6690  infcinf 8388  ℝcr 9973  0cc0 9974  1c1 9975   < clt 10112  ℕcn 11058  ℤ≥cuz 11725  Basecbs 15904  0gc0g 16147  .gcmg 17587  odcod 17990 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-n0 11331  df-z 11416  df-uz 11726  df-od 17994 This theorem is referenced by:  odcl  18001  odid  18003
 Copyright terms: Public domain W3C validator