MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odlem2 Structured version   Visualization version   GIF version

Theorem odlem2 17882
Description: Any positive annihilator of a group element is an upper bound on the (positive) order of the element. (Contributed by Mario Carneiro, 14-Jan-2015.) (Revised by Stefan O'Rear, 5-Sep-2015.) (Proof shortened by AV, 5-Oct-2020.)
Hypotheses
Ref Expression
odcl.1 𝑋 = (Base‘𝐺)
odcl.2 𝑂 = (od‘𝐺)
odid.3 · = (.g𝐺)
odid.4 0 = (0g𝐺)
Assertion
Ref Expression
odlem2 ((𝐴𝑋𝑁 ∈ ℕ ∧ (𝑁 · 𝐴) = 0 ) → (𝑂𝐴) ∈ (1...𝑁))

Proof of Theorem odlem2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 oveq1 6614 . . . . 5 (𝑦 = 𝑁 → (𝑦 · 𝐴) = (𝑁 · 𝐴))
21eqeq1d 2623 . . . 4 (𝑦 = 𝑁 → ((𝑦 · 𝐴) = 0 ↔ (𝑁 · 𝐴) = 0 ))
32elrab 3347 . . 3 (𝑁 ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } ↔ (𝑁 ∈ ℕ ∧ (𝑁 · 𝐴) = 0 ))
4 odcl.1 . . . . . 6 𝑋 = (Base‘𝐺)
5 odid.3 . . . . . 6 · = (.g𝐺)
6 odid.4 . . . . . 6 0 = (0g𝐺)
7 odcl.2 . . . . . 6 𝑂 = (od‘𝐺)
8 eqid 2621 . . . . . 6 {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } = {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }
94, 5, 6, 7, 8odval 17877 . . . . 5 (𝐴𝑋 → (𝑂𝐴) = if({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } = ∅, 0, inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }, ℝ, < )))
10 n0i 3898 . . . . . 6 (𝑁 ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } → ¬ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } = ∅)
1110iffalsed 4071 . . . . 5 (𝑁 ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } → if({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } = ∅, 0, inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }, ℝ, < )) = inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }, ℝ, < ))
129, 11sylan9eq 2675 . . . 4 ((𝐴𝑋𝑁 ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }) → (𝑂𝐴) = inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }, ℝ, < ))
13 ssrab2 3668 . . . . . 6 {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } ⊆ ℕ
14 nnuz 11670 . . . . . . . 8 ℕ = (ℤ‘1)
1513, 14sseqtri 3618 . . . . . . 7 {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } ⊆ (ℤ‘1)
16 ne0i 3899 . . . . . . . 8 (𝑁 ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } → {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } ≠ ∅)
1716adantl 482 . . . . . . 7 ((𝐴𝑋𝑁 ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }) → {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } ≠ ∅)
18 infssuzcl 11719 . . . . . . 7 (({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } ⊆ (ℤ‘1) ∧ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } ≠ ∅) → inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }, ℝ, < ) ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 })
1915, 17, 18sylancr 694 . . . . . 6 ((𝐴𝑋𝑁 ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }) → inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }, ℝ, < ) ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 })
2013, 19sseldi 3582 . . . . 5 ((𝐴𝑋𝑁 ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }) → inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }, ℝ, < ) ∈ ℕ)
21 infssuzle 11718 . . . . . . 7 (({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } ⊆ (ℤ‘1) ∧ 𝑁 ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }) → inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }, ℝ, < ) ≤ 𝑁)
2215, 21mpan 705 . . . . . 6 (𝑁 ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } → inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }, ℝ, < ) ≤ 𝑁)
2322adantl 482 . . . . 5 ((𝐴𝑋𝑁 ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }) → inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }, ℝ, < ) ≤ 𝑁)
24 elrabi 3343 . . . . . . . 8 (𝑁 ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } → 𝑁 ∈ ℕ)
2524nnzd 11428 . . . . . . 7 (𝑁 ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } → 𝑁 ∈ ℤ)
26 fznn 12353 . . . . . . 7 (𝑁 ∈ ℤ → (inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }, ℝ, < ) ∈ (1...𝑁) ↔ (inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }, ℝ, < ) ∈ ℕ ∧ inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }, ℝ, < ) ≤ 𝑁)))
2725, 26syl 17 . . . . . 6 (𝑁 ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } → (inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }, ℝ, < ) ∈ (1...𝑁) ↔ (inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }, ℝ, < ) ∈ ℕ ∧ inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }, ℝ, < ) ≤ 𝑁)))
2827adantl 482 . . . . 5 ((𝐴𝑋𝑁 ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }) → (inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }, ℝ, < ) ∈ (1...𝑁) ↔ (inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }, ℝ, < ) ∈ ℕ ∧ inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }, ℝ, < ) ≤ 𝑁)))
2920, 23, 28mpbir2and 956 . . . 4 ((𝐴𝑋𝑁 ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }) → inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }, ℝ, < ) ∈ (1...𝑁))
3012, 29eqeltrd 2698 . . 3 ((𝐴𝑋𝑁 ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }) → (𝑂𝐴) ∈ (1...𝑁))
313, 30sylan2br 493 . 2 ((𝐴𝑋 ∧ (𝑁 ∈ ℕ ∧ (𝑁 · 𝐴) = 0 )) → (𝑂𝐴) ∈ (1...𝑁))
32313impb 1257 1 ((𝐴𝑋𝑁 ∈ ℕ ∧ (𝑁 · 𝐴) = 0 ) → (𝑂𝐴) ∈ (1...𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  {crab 2911  wss 3556  c0 3893  ifcif 4060   class class class wbr 4615  cfv 5849  (class class class)co 6607  infcinf 8294  cr 9882  0cc0 9883  1c1 9884   < clt 10021  cle 10022  cn 10967  cz 11324  cuz 11634  ...cfz 12271  Basecbs 15784  0gc0g 16024  .gcmg 17464  odcod 17868
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4733  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905  ax-cnex 9939  ax-resscn 9940  ax-1cn 9941  ax-icn 9942  ax-addcl 9943  ax-addrcl 9944  ax-mulcl 9945  ax-mulrcl 9946  ax-mulcom 9947  ax-addass 9948  ax-mulass 9949  ax-distr 9950  ax-i2m1 9951  ax-1ne0 9952  ax-1rid 9953  ax-rnegex 9954  ax-rrecex 9955  ax-cnre 9956  ax-pre-lttri 9957  ax-pre-lttrn 9958  ax-pre-ltadd 9959  ax-pre-mulgt0 9960
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-pss 3572  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-tp 4155  df-op 4157  df-uni 4405  df-iun 4489  df-br 4616  df-opab 4676  df-mpt 4677  df-tr 4715  df-eprel 4987  df-id 4991  df-po 4997  df-so 4998  df-fr 5035  df-we 5037  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-pred 5641  df-ord 5687  df-on 5688  df-lim 5689  df-suc 5690  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-riota 6568  df-ov 6610  df-oprab 6611  df-mpt2 6612  df-om 7016  df-1st 7116  df-2nd 7117  df-wrecs 7355  df-recs 7416  df-rdg 7454  df-er 7690  df-en 7903  df-dom 7904  df-sdom 7905  df-sup 8295  df-inf 8296  df-pnf 10023  df-mnf 10024  df-xr 10025  df-ltxr 10026  df-le 10027  df-sub 10215  df-neg 10216  df-nn 10968  df-n0 11240  df-z 11325  df-uz 11635  df-fz 12272  df-od 17872
This theorem is referenced by:  mndodconglem  17884  oddvdsnn0  17887  odnncl  17888  oddvds  17890  od1  17900
  Copyright terms: Public domain W3C validator