MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odmod Structured version   Visualization version   GIF version

Theorem odmod 17886
Description: Reduce the argument of a group multiple by modding out the order of the element. (Contributed by Mario Carneiro, 14-Jan-2015.) (Revised by Mario Carneiro, 6-Sep-2015.)
Hypotheses
Ref Expression
odcl.1 𝑋 = (Base‘𝐺)
odcl.2 𝑂 = (od‘𝐺)
odid.3 · = (.g𝐺)
odid.4 0 = (0g𝐺)
Assertion
Ref Expression
odmod (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑁 mod (𝑂𝐴)) · 𝐴) = (𝑁 · 𝐴))

Proof of Theorem odmod
StepHypRef Expression
1 simpl3 1064 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → 𝑁 ∈ ℤ)
21zred 11426 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → 𝑁 ∈ ℝ)
3 simpr 477 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (𝑂𝐴) ∈ ℕ)
43nnrpd 11814 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (𝑂𝐴) ∈ ℝ+)
5 modval 12610 . . . 4 ((𝑁 ∈ ℝ ∧ (𝑂𝐴) ∈ ℝ+) → (𝑁 mod (𝑂𝐴)) = (𝑁 − ((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴))))))
62, 4, 5syl2anc 692 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (𝑁 mod (𝑂𝐴)) = (𝑁 − ((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴))))))
76oveq1d 6619 . 2 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑁 mod (𝑂𝐴)) · 𝐴) = ((𝑁 − ((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴))))) · 𝐴))
8 simpl1 1062 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → 𝐺 ∈ Grp)
93nnzd 11425 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (𝑂𝐴) ∈ ℤ)
102, 3nndivred 11013 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (𝑁 / (𝑂𝐴)) ∈ ℝ)
1110flcld 12539 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (⌊‘(𝑁 / (𝑂𝐴))) ∈ ℤ)
129, 11zmulcld 11432 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) ∈ ℤ)
13 simpl2 1063 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → 𝐴𝑋)
14 odcl.1 . . . 4 𝑋 = (Base‘𝐺)
15 odid.3 . . . 4 · = (.g𝐺)
16 eqid 2621 . . . 4 (-g𝐺) = (-g𝐺)
1714, 15, 16mulgsubdir 17503 . . 3 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ ((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) ∈ ℤ ∧ 𝐴𝑋)) → ((𝑁 − ((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴))))) · 𝐴) = ((𝑁 · 𝐴)(-g𝐺)(((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) · 𝐴)))
188, 1, 12, 13, 17syl13anc 1325 . 2 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑁 − ((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴))))) · 𝐴) = ((𝑁 · 𝐴)(-g𝐺)(((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) · 𝐴)))
19 nncn 10972 . . . . . . . 8 ((𝑂𝐴) ∈ ℕ → (𝑂𝐴) ∈ ℂ)
20 zcn 11326 . . . . . . . 8 ((⌊‘(𝑁 / (𝑂𝐴))) ∈ ℤ → (⌊‘(𝑁 / (𝑂𝐴))) ∈ ℂ)
21 mulcom 9966 . . . . . . . 8 (((𝑂𝐴) ∈ ℂ ∧ (⌊‘(𝑁 / (𝑂𝐴))) ∈ ℂ) → ((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) = ((⌊‘(𝑁 / (𝑂𝐴))) · (𝑂𝐴)))
2219, 20, 21syl2an 494 . . . . . . 7 (((𝑂𝐴) ∈ ℕ ∧ (⌊‘(𝑁 / (𝑂𝐴))) ∈ ℤ) → ((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) = ((⌊‘(𝑁 / (𝑂𝐴))) · (𝑂𝐴)))
233, 11, 22syl2anc 692 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) = ((⌊‘(𝑁 / (𝑂𝐴))) · (𝑂𝐴)))
2423oveq1d 6619 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) · 𝐴) = (((⌊‘(𝑁 / (𝑂𝐴))) · (𝑂𝐴)) · 𝐴))
2514, 15mulgass 17500 . . . . . 6 ((𝐺 ∈ Grp ∧ ((⌊‘(𝑁 / (𝑂𝐴))) ∈ ℤ ∧ (𝑂𝐴) ∈ ℤ ∧ 𝐴𝑋)) → (((⌊‘(𝑁 / (𝑂𝐴))) · (𝑂𝐴)) · 𝐴) = ((⌊‘(𝑁 / (𝑂𝐴))) · ((𝑂𝐴) · 𝐴)))
268, 11, 9, 13, 25syl13anc 1325 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (((⌊‘(𝑁 / (𝑂𝐴))) · (𝑂𝐴)) · 𝐴) = ((⌊‘(𝑁 / (𝑂𝐴))) · ((𝑂𝐴) · 𝐴)))
27 odcl.2 . . . . . . . . 9 𝑂 = (od‘𝐺)
28 odid.4 . . . . . . . . 9 0 = (0g𝐺)
2914, 27, 15, 28odid 17878 . . . . . . . 8 (𝐴𝑋 → ((𝑂𝐴) · 𝐴) = 0 )
3013, 29syl 17 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑂𝐴) · 𝐴) = 0 )
3130oveq2d 6620 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((⌊‘(𝑁 / (𝑂𝐴))) · ((𝑂𝐴) · 𝐴)) = ((⌊‘(𝑁 / (𝑂𝐴))) · 0 ))
3214, 15, 28mulgz 17489 . . . . . . 7 ((𝐺 ∈ Grp ∧ (⌊‘(𝑁 / (𝑂𝐴))) ∈ ℤ) → ((⌊‘(𝑁 / (𝑂𝐴))) · 0 ) = 0 )
338, 11, 32syl2anc 692 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((⌊‘(𝑁 / (𝑂𝐴))) · 0 ) = 0 )
3431, 33eqtrd 2655 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((⌊‘(𝑁 / (𝑂𝐴))) · ((𝑂𝐴) · 𝐴)) = 0 )
3524, 26, 343eqtrd 2659 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) · 𝐴) = 0 )
3635oveq2d 6620 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑁 · 𝐴)(-g𝐺)(((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) · 𝐴)) = ((𝑁 · 𝐴)(-g𝐺) 0 ))
3714, 15mulgcl 17480 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝐴𝑋) → (𝑁 · 𝐴) ∈ 𝑋)
388, 1, 13, 37syl3anc 1323 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (𝑁 · 𝐴) ∈ 𝑋)
3914, 28, 16grpsubid1 17421 . . . 4 ((𝐺 ∈ Grp ∧ (𝑁 · 𝐴) ∈ 𝑋) → ((𝑁 · 𝐴)(-g𝐺) 0 ) = (𝑁 · 𝐴))
408, 38, 39syl2anc 692 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑁 · 𝐴)(-g𝐺) 0 ) = (𝑁 · 𝐴))
4136, 40eqtrd 2655 . 2 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑁 · 𝐴)(-g𝐺)(((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) · 𝐴)) = (𝑁 · 𝐴))
427, 18, 413eqtrd 2659 1 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑁 mod (𝑂𝐴)) · 𝐴) = (𝑁 · 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987  cfv 5847  (class class class)co 6604  cc 9878  cr 9879   · cmul 9885  cmin 10210   / cdiv 10628  cn 10964  cz 11321  +crp 11776  cfl 12531   mod cmo 12608  Basecbs 15781  0gc0g 16021  Grpcgrp 17343  -gcsg 17345  .gcmg 17461  odcod 17865
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-sup 8292  df-inf 8293  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-n0 11237  df-z 11322  df-uz 11632  df-rp 11777  df-fz 12269  df-fl 12533  df-mod 12609  df-seq 12742  df-0g 16023  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-grp 17346  df-minusg 17347  df-sbg 17348  df-mulg 17462  df-od 17869
This theorem is referenced by:  oddvds  17887  odf1o2  17909
  Copyright terms: Public domain W3C validator