MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odmulg Structured version   Visualization version   GIF version

Theorem odmulg 18019
Description: Relationship between the order of an element and that of a multiple. (Contributed by Stefan O'Rear, 6-Sep-2015.)
Hypotheses
Ref Expression
odmulgid.1 𝑋 = (Base‘𝐺)
odmulgid.2 𝑂 = (od‘𝐺)
odmulgid.3 · = (.g𝐺)
Assertion
Ref Expression
odmulg ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → (𝑂𝐴) = ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))))

Proof of Theorem odmulg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 odmulgid.1 . . . . . . . . 9 𝑋 = (Base‘𝐺)
2 odmulgid.3 . . . . . . . . 9 · = (.g𝐺)
31, 2mulgcl 17606 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝐴𝑋) → (𝑁 · 𝐴) ∈ 𝑋)
433com23 1291 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → (𝑁 · 𝐴) ∈ 𝑋)
5 odmulgid.2 . . . . . . . 8 𝑂 = (od‘𝐺)
61, 5odcl 18001 . . . . . . 7 ((𝑁 · 𝐴) ∈ 𝑋 → (𝑂‘(𝑁 · 𝐴)) ∈ ℕ0)
74, 6syl 17 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → (𝑂‘(𝑁 · 𝐴)) ∈ ℕ0)
87nn0cnd 11391 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → (𝑂‘(𝑁 · 𝐴)) ∈ ℂ)
98adantr 480 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 0) → (𝑂‘(𝑁 · 𝐴)) ∈ ℂ)
109mul02d 10272 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 0) → (0 · (𝑂‘(𝑁 · 𝐴))) = 0)
11 simpr 476 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 0) → (𝑁 gcd (𝑂𝐴)) = 0)
1211oveq1d 6705 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 0) → ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) = (0 · (𝑂‘(𝑁 · 𝐴))))
13 simp3 1083 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
141, 5odcl 18001 . . . . . . 7 (𝐴𝑋 → (𝑂𝐴) ∈ ℕ0)
15143ad2ant2 1103 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → (𝑂𝐴) ∈ ℕ0)
1615nn0zd 11518 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → (𝑂𝐴) ∈ ℤ)
17 gcdeq0 15285 . . . . 5 ((𝑁 ∈ ℤ ∧ (𝑂𝐴) ∈ ℤ) → ((𝑁 gcd (𝑂𝐴)) = 0 ↔ (𝑁 = 0 ∧ (𝑂𝐴) = 0)))
1813, 16, 17syl2anc 694 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → ((𝑁 gcd (𝑂𝐴)) = 0 ↔ (𝑁 = 0 ∧ (𝑂𝐴) = 0)))
1918simplbda 653 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 0) → (𝑂𝐴) = 0)
2010, 12, 193eqtr4rd 2696 . 2 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 0) → (𝑂𝐴) = ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))))
21 simpll3 1122 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) ∧ 𝑥 ∈ ℕ0) → 𝑁 ∈ ℤ)
2216ad2antrr 762 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) ∧ 𝑥 ∈ ℕ0) → (𝑂𝐴) ∈ ℤ)
23 gcddvds 15272 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ (𝑂𝐴) ∈ ℤ) → ((𝑁 gcd (𝑂𝐴)) ∥ 𝑁 ∧ (𝑁 gcd (𝑂𝐴)) ∥ (𝑂𝐴)))
2421, 22, 23syl2anc 694 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) ∧ 𝑥 ∈ ℕ0) → ((𝑁 gcd (𝑂𝐴)) ∥ 𝑁 ∧ (𝑁 gcd (𝑂𝐴)) ∥ (𝑂𝐴)))
2524simprd 478 . . . . . 6 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) ∧ 𝑥 ∈ ℕ0) → (𝑁 gcd (𝑂𝐴)) ∥ (𝑂𝐴))
2613, 16gcdcld 15277 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → (𝑁 gcd (𝑂𝐴)) ∈ ℕ0)
2726adantr 480 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) → (𝑁 gcd (𝑂𝐴)) ∈ ℕ0)
2827nn0zd 11518 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) → (𝑁 gcd (𝑂𝐴)) ∈ ℤ)
2928adantr 480 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) ∧ 𝑥 ∈ ℕ0) → (𝑁 gcd (𝑂𝐴)) ∈ ℤ)
30 nn0z 11438 . . . . . . . 8 (𝑥 ∈ ℕ0𝑥 ∈ ℤ)
3130adantl 481 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) ∧ 𝑥 ∈ ℕ0) → 𝑥 ∈ ℤ)
32 dvdstr 15065 . . . . . . 7 (((𝑁 gcd (𝑂𝐴)) ∈ ℤ ∧ (𝑂𝐴) ∈ ℤ ∧ 𝑥 ∈ ℤ) → (((𝑁 gcd (𝑂𝐴)) ∥ (𝑂𝐴) ∧ (𝑂𝐴) ∥ 𝑥) → (𝑁 gcd (𝑂𝐴)) ∥ 𝑥))
3329, 22, 31, 32syl3anc 1366 . . . . . 6 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) ∧ 𝑥 ∈ ℕ0) → (((𝑁 gcd (𝑂𝐴)) ∥ (𝑂𝐴) ∧ (𝑂𝐴) ∥ 𝑥) → (𝑁 gcd (𝑂𝐴)) ∥ 𝑥))
3425, 33mpand 711 . . . . 5 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) ∧ 𝑥 ∈ ℕ0) → ((𝑂𝐴) ∥ 𝑥 → (𝑁 gcd (𝑂𝐴)) ∥ 𝑥))
357nn0zd 11518 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → (𝑂‘(𝑁 · 𝐴)) ∈ ℤ)
3635ad2antrr 762 . . . . . 6 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) ∧ 𝑥 ∈ ℕ0) → (𝑂‘(𝑁 · 𝐴)) ∈ ℤ)
37 muldvds1 15053 . . . . . 6 (((𝑁 gcd (𝑂𝐴)) ∈ ℤ ∧ (𝑂‘(𝑁 · 𝐴)) ∈ ℤ ∧ 𝑥 ∈ ℤ) → (((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ 𝑥 → (𝑁 gcd (𝑂𝐴)) ∥ 𝑥))
3829, 36, 31, 37syl3anc 1366 . . . . 5 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) ∧ 𝑥 ∈ ℕ0) → (((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ 𝑥 → (𝑁 gcd (𝑂𝐴)) ∥ 𝑥))
39 dvdszrcl 15032 . . . . . . . . 9 ((𝑁 gcd (𝑂𝐴)) ∥ 𝑥 → ((𝑁 gcd (𝑂𝐴)) ∈ ℤ ∧ 𝑥 ∈ ℤ))
40 divides 15029 . . . . . . . . 9 (((𝑁 gcd (𝑂𝐴)) ∈ ℤ ∧ 𝑥 ∈ ℤ) → ((𝑁 gcd (𝑂𝐴)) ∥ 𝑥 ↔ ∃𝑦 ∈ ℤ (𝑦 · (𝑁 gcd (𝑂𝐴))) = 𝑥))
4139, 40syl 17 . . . . . . . 8 ((𝑁 gcd (𝑂𝐴)) ∥ 𝑥 → ((𝑁 gcd (𝑂𝐴)) ∥ 𝑥 ↔ ∃𝑦 ∈ ℤ (𝑦 · (𝑁 gcd (𝑂𝐴))) = 𝑥))
4241ibi 256 . . . . . . 7 ((𝑁 gcd (𝑂𝐴)) ∥ 𝑥 → ∃𝑦 ∈ ℤ (𝑦 · (𝑁 gcd (𝑂𝐴))) = 𝑥)
4335adantr 480 . . . . . . . . . . . . 13 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ ((𝑁 gcd (𝑂𝐴)) ≠ 0 ∧ 𝑦 ∈ ℤ)) → (𝑂‘(𝑁 · 𝐴)) ∈ ℤ)
44 simprr 811 . . . . . . . . . . . . 13 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ ((𝑁 gcd (𝑂𝐴)) ≠ 0 ∧ 𝑦 ∈ ℤ)) → 𝑦 ∈ ℤ)
4528adantrr 753 . . . . . . . . . . . . 13 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ ((𝑁 gcd (𝑂𝐴)) ≠ 0 ∧ 𝑦 ∈ ℤ)) → (𝑁 gcd (𝑂𝐴)) ∈ ℤ)
46 simprl 809 . . . . . . . . . . . . 13 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ ((𝑁 gcd (𝑂𝐴)) ≠ 0 ∧ 𝑦 ∈ ℤ)) → (𝑁 gcd (𝑂𝐴)) ≠ 0)
47 dvdscmulr 15057 . . . . . . . . . . . . 13 (((𝑂‘(𝑁 · 𝐴)) ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ ((𝑁 gcd (𝑂𝐴)) ∈ ℤ ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0)) → (((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ ((𝑁 gcd (𝑂𝐴)) · 𝑦) ↔ (𝑂‘(𝑁 · 𝐴)) ∥ 𝑦))
4843, 44, 45, 46, 47syl112anc 1370 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ ((𝑁 gcd (𝑂𝐴)) ≠ 0 ∧ 𝑦 ∈ ℤ)) → (((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ ((𝑁 gcd (𝑂𝐴)) · 𝑦) ↔ (𝑂‘(𝑁 · 𝐴)) ∥ 𝑦))
491, 5, 2odmulgid 18017 . . . . . . . . . . . . 13 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ 𝑦 ∈ ℤ) → ((𝑂‘(𝑁 · 𝐴)) ∥ 𝑦 ↔ (𝑂𝐴) ∥ (𝑦 · 𝑁)))
5049adantrl 752 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ ((𝑁 gcd (𝑂𝐴)) ≠ 0 ∧ 𝑦 ∈ ℤ)) → ((𝑂‘(𝑁 · 𝐴)) ∥ 𝑦 ↔ (𝑂𝐴) ∥ (𝑦 · 𝑁)))
51 simpl3 1086 . . . . . . . . . . . . 13 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ ((𝑁 gcd (𝑂𝐴)) ≠ 0 ∧ 𝑦 ∈ ℤ)) → 𝑁 ∈ ℤ)
52 dvdsmulgcd 15321 . . . . . . . . . . . . 13 ((𝑦 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑂𝐴) ∥ (𝑦 · 𝑁) ↔ (𝑂𝐴) ∥ (𝑦 · (𝑁 gcd (𝑂𝐴)))))
5344, 51, 52syl2anc 694 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ ((𝑁 gcd (𝑂𝐴)) ≠ 0 ∧ 𝑦 ∈ ℤ)) → ((𝑂𝐴) ∥ (𝑦 · 𝑁) ↔ (𝑂𝐴) ∥ (𝑦 · (𝑁 gcd (𝑂𝐴)))))
5448, 50, 533bitrrd 295 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ ((𝑁 gcd (𝑂𝐴)) ≠ 0 ∧ 𝑦 ∈ ℤ)) → ((𝑂𝐴) ∥ (𝑦 · (𝑁 gcd (𝑂𝐴))) ↔ ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ ((𝑁 gcd (𝑂𝐴)) · 𝑦)))
5545zcnd 11521 . . . . . . . . . . . . 13 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ ((𝑁 gcd (𝑂𝐴)) ≠ 0 ∧ 𝑦 ∈ ℤ)) → (𝑁 gcd (𝑂𝐴)) ∈ ℂ)
5644zcnd 11521 . . . . . . . . . . . . 13 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ ((𝑁 gcd (𝑂𝐴)) ≠ 0 ∧ 𝑦 ∈ ℤ)) → 𝑦 ∈ ℂ)
5755, 56mulcomd 10099 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ ((𝑁 gcd (𝑂𝐴)) ≠ 0 ∧ 𝑦 ∈ ℤ)) → ((𝑁 gcd (𝑂𝐴)) · 𝑦) = (𝑦 · (𝑁 gcd (𝑂𝐴))))
5857breq2d 4697 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ ((𝑁 gcd (𝑂𝐴)) ≠ 0 ∧ 𝑦 ∈ ℤ)) → (((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ ((𝑁 gcd (𝑂𝐴)) · 𝑦) ↔ ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ (𝑦 · (𝑁 gcd (𝑂𝐴)))))
5954, 58bitrd 268 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ ((𝑁 gcd (𝑂𝐴)) ≠ 0 ∧ 𝑦 ∈ ℤ)) → ((𝑂𝐴) ∥ (𝑦 · (𝑁 gcd (𝑂𝐴))) ↔ ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ (𝑦 · (𝑁 gcd (𝑂𝐴)))))
6059anassrs 681 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) ∧ 𝑦 ∈ ℤ) → ((𝑂𝐴) ∥ (𝑦 · (𝑁 gcd (𝑂𝐴))) ↔ ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ (𝑦 · (𝑁 gcd (𝑂𝐴)))))
61 breq2 4689 . . . . . . . . . 10 ((𝑦 · (𝑁 gcd (𝑂𝐴))) = 𝑥 → ((𝑂𝐴) ∥ (𝑦 · (𝑁 gcd (𝑂𝐴))) ↔ (𝑂𝐴) ∥ 𝑥))
62 breq2 4689 . . . . . . . . . 10 ((𝑦 · (𝑁 gcd (𝑂𝐴))) = 𝑥 → (((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ (𝑦 · (𝑁 gcd (𝑂𝐴))) ↔ ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ 𝑥))
6361, 62bibi12d 334 . . . . . . . . 9 ((𝑦 · (𝑁 gcd (𝑂𝐴))) = 𝑥 → (((𝑂𝐴) ∥ (𝑦 · (𝑁 gcd (𝑂𝐴))) ↔ ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ (𝑦 · (𝑁 gcd (𝑂𝐴)))) ↔ ((𝑂𝐴) ∥ 𝑥 ↔ ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ 𝑥)))
6460, 63syl5ibcom 235 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) ∧ 𝑦 ∈ ℤ) → ((𝑦 · (𝑁 gcd (𝑂𝐴))) = 𝑥 → ((𝑂𝐴) ∥ 𝑥 ↔ ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ 𝑥)))
6564rexlimdva 3060 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) → (∃𝑦 ∈ ℤ (𝑦 · (𝑁 gcd (𝑂𝐴))) = 𝑥 → ((𝑂𝐴) ∥ 𝑥 ↔ ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ 𝑥)))
6642, 65syl5 34 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) → ((𝑁 gcd (𝑂𝐴)) ∥ 𝑥 → ((𝑂𝐴) ∥ 𝑥 ↔ ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ 𝑥)))
6766adantr 480 . . . . 5 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) ∧ 𝑥 ∈ ℕ0) → ((𝑁 gcd (𝑂𝐴)) ∥ 𝑥 → ((𝑂𝐴) ∥ 𝑥 ↔ ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ 𝑥)))
6834, 38, 67pm5.21ndd 368 . . . 4 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) ∧ 𝑥 ∈ ℕ0) → ((𝑂𝐴) ∥ 𝑥 ↔ ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ 𝑥))
6968ralrimiva 2995 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) → ∀𝑥 ∈ ℕ0 ((𝑂𝐴) ∥ 𝑥 ↔ ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ 𝑥))
7015adantr 480 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) → (𝑂𝐴) ∈ ℕ0)
717adantr 480 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) → (𝑂‘(𝑁 · 𝐴)) ∈ ℕ0)
7227, 71nn0mulcld 11394 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) → ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∈ ℕ0)
73 dvdsext 15090 . . . 4 (((𝑂𝐴) ∈ ℕ0 ∧ ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∈ ℕ0) → ((𝑂𝐴) = ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ↔ ∀𝑥 ∈ ℕ0 ((𝑂𝐴) ∥ 𝑥 ↔ ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ 𝑥)))
7470, 72, 73syl2anc 694 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) → ((𝑂𝐴) = ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ↔ ∀𝑥 ∈ ℕ0 ((𝑂𝐴) ∥ 𝑥 ↔ ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ 𝑥)))
7569, 74mpbird 247 . 2 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) → (𝑂𝐴) = ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))))
7620, 75pm2.61dane 2910 1 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → (𝑂𝐴) = ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  wral 2941  wrex 2942   class class class wbr 4685  cfv 5926  (class class class)co 6690  cc 9972  0cc0 9974   · cmul 9979  0cn0 11330  cz 11415  cdvds 15027   gcd cgcd 15263  Basecbs 15904  Grpcgrp 17469  .gcmg 17587  odcod 17990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-fz 12365  df-fl 12633  df-mod 12709  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-dvds 15028  df-gcd 15264  df-0g 16149  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-grp 17472  df-minusg 17473  df-sbg 17474  df-mulg 17588  df-od 17994
This theorem is referenced by:  odmulgeq  18020  odinv  18024  gexexlem  18301
  Copyright terms: Public domain W3C validator