MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odmulg Structured version   Visualization version   GIF version

Theorem odmulg 18612
Description: Relationship between the order of an element and that of a multiple. (Contributed by Stefan O'Rear, 6-Sep-2015.)
Hypotheses
Ref Expression
odmulgid.1 𝑋 = (Base‘𝐺)
odmulgid.2 𝑂 = (od‘𝐺)
odmulgid.3 · = (.g𝐺)
Assertion
Ref Expression
odmulg ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → (𝑂𝐴) = ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))))

Proof of Theorem odmulg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 odmulgid.1 . . . . . . . . 9 𝑋 = (Base‘𝐺)
2 odmulgid.3 . . . . . . . . 9 · = (.g𝐺)
31, 2mulgcl 18183 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝐴𝑋) → (𝑁 · 𝐴) ∈ 𝑋)
433com23 1118 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → (𝑁 · 𝐴) ∈ 𝑋)
5 odmulgid.2 . . . . . . . 8 𝑂 = (od‘𝐺)
61, 5odcl 18593 . . . . . . 7 ((𝑁 · 𝐴) ∈ 𝑋 → (𝑂‘(𝑁 · 𝐴)) ∈ ℕ0)
74, 6syl 17 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → (𝑂‘(𝑁 · 𝐴)) ∈ ℕ0)
87nn0cnd 11945 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → (𝑂‘(𝑁 · 𝐴)) ∈ ℂ)
98adantr 481 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 0) → (𝑂‘(𝑁 · 𝐴)) ∈ ℂ)
109mul02d 10826 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 0) → (0 · (𝑂‘(𝑁 · 𝐴))) = 0)
11 simpr 485 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 0) → (𝑁 gcd (𝑂𝐴)) = 0)
1211oveq1d 7160 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 0) → ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) = (0 · (𝑂‘(𝑁 · 𝐴))))
13 simp3 1130 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
141, 5odcl 18593 . . . . . . 7 (𝐴𝑋 → (𝑂𝐴) ∈ ℕ0)
15143ad2ant2 1126 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → (𝑂𝐴) ∈ ℕ0)
1615nn0zd 12073 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → (𝑂𝐴) ∈ ℤ)
17 gcdeq0 15853 . . . . 5 ((𝑁 ∈ ℤ ∧ (𝑂𝐴) ∈ ℤ) → ((𝑁 gcd (𝑂𝐴)) = 0 ↔ (𝑁 = 0 ∧ (𝑂𝐴) = 0)))
1813, 16, 17syl2anc 584 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → ((𝑁 gcd (𝑂𝐴)) = 0 ↔ (𝑁 = 0 ∧ (𝑂𝐴) = 0)))
1918simplbda 500 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 0) → (𝑂𝐴) = 0)
2010, 12, 193eqtr4rd 2864 . 2 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 0) → (𝑂𝐴) = ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))))
21 simpll3 1206 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) ∧ 𝑥 ∈ ℕ0) → 𝑁 ∈ ℤ)
2216ad2antrr 722 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) ∧ 𝑥 ∈ ℕ0) → (𝑂𝐴) ∈ ℤ)
23 gcddvds 15840 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ (𝑂𝐴) ∈ ℤ) → ((𝑁 gcd (𝑂𝐴)) ∥ 𝑁 ∧ (𝑁 gcd (𝑂𝐴)) ∥ (𝑂𝐴)))
2421, 22, 23syl2anc 584 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) ∧ 𝑥 ∈ ℕ0) → ((𝑁 gcd (𝑂𝐴)) ∥ 𝑁 ∧ (𝑁 gcd (𝑂𝐴)) ∥ (𝑂𝐴)))
2524simprd 496 . . . . . 6 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) ∧ 𝑥 ∈ ℕ0) → (𝑁 gcd (𝑂𝐴)) ∥ (𝑂𝐴))
2613, 16gcdcld 15845 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → (𝑁 gcd (𝑂𝐴)) ∈ ℕ0)
2726adantr 481 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) → (𝑁 gcd (𝑂𝐴)) ∈ ℕ0)
2827nn0zd 12073 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) → (𝑁 gcd (𝑂𝐴)) ∈ ℤ)
2928adantr 481 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) ∧ 𝑥 ∈ ℕ0) → (𝑁 gcd (𝑂𝐴)) ∈ ℤ)
30 nn0z 11993 . . . . . . . 8 (𝑥 ∈ ℕ0𝑥 ∈ ℤ)
3130adantl 482 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) ∧ 𝑥 ∈ ℕ0) → 𝑥 ∈ ℤ)
32 dvdstr 15634 . . . . . . 7 (((𝑁 gcd (𝑂𝐴)) ∈ ℤ ∧ (𝑂𝐴) ∈ ℤ ∧ 𝑥 ∈ ℤ) → (((𝑁 gcd (𝑂𝐴)) ∥ (𝑂𝐴) ∧ (𝑂𝐴) ∥ 𝑥) → (𝑁 gcd (𝑂𝐴)) ∥ 𝑥))
3329, 22, 31, 32syl3anc 1363 . . . . . 6 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) ∧ 𝑥 ∈ ℕ0) → (((𝑁 gcd (𝑂𝐴)) ∥ (𝑂𝐴) ∧ (𝑂𝐴) ∥ 𝑥) → (𝑁 gcd (𝑂𝐴)) ∥ 𝑥))
3425, 33mpand 691 . . . . 5 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) ∧ 𝑥 ∈ ℕ0) → ((𝑂𝐴) ∥ 𝑥 → (𝑁 gcd (𝑂𝐴)) ∥ 𝑥))
357nn0zd 12073 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → (𝑂‘(𝑁 · 𝐴)) ∈ ℤ)
3635ad2antrr 722 . . . . . 6 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) ∧ 𝑥 ∈ ℕ0) → (𝑂‘(𝑁 · 𝐴)) ∈ ℤ)
37 muldvds1 15622 . . . . . 6 (((𝑁 gcd (𝑂𝐴)) ∈ ℤ ∧ (𝑂‘(𝑁 · 𝐴)) ∈ ℤ ∧ 𝑥 ∈ ℤ) → (((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ 𝑥 → (𝑁 gcd (𝑂𝐴)) ∥ 𝑥))
3829, 36, 31, 37syl3anc 1363 . . . . 5 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) ∧ 𝑥 ∈ ℕ0) → (((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ 𝑥 → (𝑁 gcd (𝑂𝐴)) ∥ 𝑥))
39 dvdszrcl 15600 . . . . . . . . 9 ((𝑁 gcd (𝑂𝐴)) ∥ 𝑥 → ((𝑁 gcd (𝑂𝐴)) ∈ ℤ ∧ 𝑥 ∈ ℤ))
40 divides 15597 . . . . . . . . 9 (((𝑁 gcd (𝑂𝐴)) ∈ ℤ ∧ 𝑥 ∈ ℤ) → ((𝑁 gcd (𝑂𝐴)) ∥ 𝑥 ↔ ∃𝑦 ∈ ℤ (𝑦 · (𝑁 gcd (𝑂𝐴))) = 𝑥))
4139, 40syl 17 . . . . . . . 8 ((𝑁 gcd (𝑂𝐴)) ∥ 𝑥 → ((𝑁 gcd (𝑂𝐴)) ∥ 𝑥 ↔ ∃𝑦 ∈ ℤ (𝑦 · (𝑁 gcd (𝑂𝐴))) = 𝑥))
4241ibi 268 . . . . . . 7 ((𝑁 gcd (𝑂𝐴)) ∥ 𝑥 → ∃𝑦 ∈ ℤ (𝑦 · (𝑁 gcd (𝑂𝐴))) = 𝑥)
4335adantr 481 . . . . . . . . . . . . 13 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ ((𝑁 gcd (𝑂𝐴)) ≠ 0 ∧ 𝑦 ∈ ℤ)) → (𝑂‘(𝑁 · 𝐴)) ∈ ℤ)
44 simprr 769 . . . . . . . . . . . . 13 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ ((𝑁 gcd (𝑂𝐴)) ≠ 0 ∧ 𝑦 ∈ ℤ)) → 𝑦 ∈ ℤ)
4528adantrr 713 . . . . . . . . . . . . 13 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ ((𝑁 gcd (𝑂𝐴)) ≠ 0 ∧ 𝑦 ∈ ℤ)) → (𝑁 gcd (𝑂𝐴)) ∈ ℤ)
46 simprl 767 . . . . . . . . . . . . 13 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ ((𝑁 gcd (𝑂𝐴)) ≠ 0 ∧ 𝑦 ∈ ℤ)) → (𝑁 gcd (𝑂𝐴)) ≠ 0)
47 dvdscmulr 15626 . . . . . . . . . . . . 13 (((𝑂‘(𝑁 · 𝐴)) ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ ((𝑁 gcd (𝑂𝐴)) ∈ ℤ ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0)) → (((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ ((𝑁 gcd (𝑂𝐴)) · 𝑦) ↔ (𝑂‘(𝑁 · 𝐴)) ∥ 𝑦))
4843, 44, 45, 46, 47syl112anc 1366 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ ((𝑁 gcd (𝑂𝐴)) ≠ 0 ∧ 𝑦 ∈ ℤ)) → (((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ ((𝑁 gcd (𝑂𝐴)) · 𝑦) ↔ (𝑂‘(𝑁 · 𝐴)) ∥ 𝑦))
491, 5, 2odmulgid 18610 . . . . . . . . . . . . 13 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ 𝑦 ∈ ℤ) → ((𝑂‘(𝑁 · 𝐴)) ∥ 𝑦 ↔ (𝑂𝐴) ∥ (𝑦 · 𝑁)))
5049adantrl 712 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ ((𝑁 gcd (𝑂𝐴)) ≠ 0 ∧ 𝑦 ∈ ℤ)) → ((𝑂‘(𝑁 · 𝐴)) ∥ 𝑦 ↔ (𝑂𝐴) ∥ (𝑦 · 𝑁)))
51 simpl3 1185 . . . . . . . . . . . . 13 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ ((𝑁 gcd (𝑂𝐴)) ≠ 0 ∧ 𝑦 ∈ ℤ)) → 𝑁 ∈ ℤ)
52 dvdsmulgcd 15893 . . . . . . . . . . . . 13 ((𝑦 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑂𝐴) ∥ (𝑦 · 𝑁) ↔ (𝑂𝐴) ∥ (𝑦 · (𝑁 gcd (𝑂𝐴)))))
5344, 51, 52syl2anc 584 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ ((𝑁 gcd (𝑂𝐴)) ≠ 0 ∧ 𝑦 ∈ ℤ)) → ((𝑂𝐴) ∥ (𝑦 · 𝑁) ↔ (𝑂𝐴) ∥ (𝑦 · (𝑁 gcd (𝑂𝐴)))))
5448, 50, 533bitrrd 307 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ ((𝑁 gcd (𝑂𝐴)) ≠ 0 ∧ 𝑦 ∈ ℤ)) → ((𝑂𝐴) ∥ (𝑦 · (𝑁 gcd (𝑂𝐴))) ↔ ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ ((𝑁 gcd (𝑂𝐴)) · 𝑦)))
5545zcnd 12076 . . . . . . . . . . . . 13 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ ((𝑁 gcd (𝑂𝐴)) ≠ 0 ∧ 𝑦 ∈ ℤ)) → (𝑁 gcd (𝑂𝐴)) ∈ ℂ)
5644zcnd 12076 . . . . . . . . . . . . 13 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ ((𝑁 gcd (𝑂𝐴)) ≠ 0 ∧ 𝑦 ∈ ℤ)) → 𝑦 ∈ ℂ)
5755, 56mulcomd 10650 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ ((𝑁 gcd (𝑂𝐴)) ≠ 0 ∧ 𝑦 ∈ ℤ)) → ((𝑁 gcd (𝑂𝐴)) · 𝑦) = (𝑦 · (𝑁 gcd (𝑂𝐴))))
5857breq2d 5069 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ ((𝑁 gcd (𝑂𝐴)) ≠ 0 ∧ 𝑦 ∈ ℤ)) → (((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ ((𝑁 gcd (𝑂𝐴)) · 𝑦) ↔ ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ (𝑦 · (𝑁 gcd (𝑂𝐴)))))
5954, 58bitrd 280 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ ((𝑁 gcd (𝑂𝐴)) ≠ 0 ∧ 𝑦 ∈ ℤ)) → ((𝑂𝐴) ∥ (𝑦 · (𝑁 gcd (𝑂𝐴))) ↔ ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ (𝑦 · (𝑁 gcd (𝑂𝐴)))))
6059anassrs 468 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) ∧ 𝑦 ∈ ℤ) → ((𝑂𝐴) ∥ (𝑦 · (𝑁 gcd (𝑂𝐴))) ↔ ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ (𝑦 · (𝑁 gcd (𝑂𝐴)))))
61 breq2 5061 . . . . . . . . . 10 ((𝑦 · (𝑁 gcd (𝑂𝐴))) = 𝑥 → ((𝑂𝐴) ∥ (𝑦 · (𝑁 gcd (𝑂𝐴))) ↔ (𝑂𝐴) ∥ 𝑥))
62 breq2 5061 . . . . . . . . . 10 ((𝑦 · (𝑁 gcd (𝑂𝐴))) = 𝑥 → (((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ (𝑦 · (𝑁 gcd (𝑂𝐴))) ↔ ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ 𝑥))
6361, 62bibi12d 347 . . . . . . . . 9 ((𝑦 · (𝑁 gcd (𝑂𝐴))) = 𝑥 → (((𝑂𝐴) ∥ (𝑦 · (𝑁 gcd (𝑂𝐴))) ↔ ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ (𝑦 · (𝑁 gcd (𝑂𝐴)))) ↔ ((𝑂𝐴) ∥ 𝑥 ↔ ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ 𝑥)))
6460, 63syl5ibcom 246 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) ∧ 𝑦 ∈ ℤ) → ((𝑦 · (𝑁 gcd (𝑂𝐴))) = 𝑥 → ((𝑂𝐴) ∥ 𝑥 ↔ ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ 𝑥)))
6564rexlimdva 3281 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) → (∃𝑦 ∈ ℤ (𝑦 · (𝑁 gcd (𝑂𝐴))) = 𝑥 → ((𝑂𝐴) ∥ 𝑥 ↔ ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ 𝑥)))
6642, 65syl5 34 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) → ((𝑁 gcd (𝑂𝐴)) ∥ 𝑥 → ((𝑂𝐴) ∥ 𝑥 ↔ ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ 𝑥)))
6766adantr 481 . . . . 5 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) ∧ 𝑥 ∈ ℕ0) → ((𝑁 gcd (𝑂𝐴)) ∥ 𝑥 → ((𝑂𝐴) ∥ 𝑥 ↔ ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ 𝑥)))
6834, 38, 67pm5.21ndd 381 . . . 4 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) ∧ 𝑥 ∈ ℕ0) → ((𝑂𝐴) ∥ 𝑥 ↔ ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ 𝑥))
6968ralrimiva 3179 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) → ∀𝑥 ∈ ℕ0 ((𝑂𝐴) ∥ 𝑥 ↔ ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ 𝑥))
7015adantr 481 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) → (𝑂𝐴) ∈ ℕ0)
717adantr 481 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) → (𝑂‘(𝑁 · 𝐴)) ∈ ℕ0)
7227, 71nn0mulcld 11948 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) → ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∈ ℕ0)
73 dvdsext 15659 . . . 4 (((𝑂𝐴) ∈ ℕ0 ∧ ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∈ ℕ0) → ((𝑂𝐴) = ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ↔ ∀𝑥 ∈ ℕ0 ((𝑂𝐴) ∥ 𝑥 ↔ ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ 𝑥)))
7470, 72, 73syl2anc 584 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) → ((𝑂𝐴) = ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ↔ ∀𝑥 ∈ ℕ0 ((𝑂𝐴) ∥ 𝑥 ↔ ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ 𝑥)))
7569, 74mpbird 258 . 2 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) → (𝑂𝐴) = ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))))
7620, 75pm2.61dane 3101 1 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → (𝑂𝐴) = ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  wne 3013  wral 3135  wrex 3136   class class class wbr 5057  cfv 6348  (class class class)co 7145  cc 10523  0cc0 10525   · cmul 10530  0cn0 11885  cz 11969  cdvds 15595   gcd cgcd 15831  Basecbs 16471  Grpcgrp 18041  .gcmg 18162  odcod 18581
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-sup 8894  df-inf 8895  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12881  df-fl 13150  df-mod 13226  df-seq 13358  df-exp 13418  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-dvds 15596  df-gcd 15832  df-0g 16703  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-grp 18044  df-minusg 18045  df-sbg 18046  df-mulg 18163  df-od 18585
This theorem is referenced by:  odmulgeq  18613  odinv  18617  gexexlem  18901  fincygsubgodd  19163
  Copyright terms: Public domain W3C validator