MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odnncl Structured version   Visualization version   GIF version

Theorem odnncl 18602
Description: If a nonzero multiple of an element is zero, the element has positive order. (Contributed by Stefan O'Rear, 5-Sep-2015.) (Revised by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
odcl.1 𝑋 = (Base‘𝐺)
odcl.2 𝑂 = (od‘𝐺)
odid.3 · = (.g𝐺)
odid.4 0 = (0g𝐺)
Assertion
Ref Expression
odnncl (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → (𝑂𝐴) ∈ ℕ)

Proof of Theorem odnncl
StepHypRef Expression
1 simpl2 1184 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → 𝐴𝑋)
2 simprl 767 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → 𝑁 ≠ 0)
3 simpl3 1185 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → 𝑁 ∈ ℤ)
43zcnd 12076 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → 𝑁 ∈ ℂ)
5 abs00 14637 . . . . . . 7 (𝑁 ∈ ℂ → ((abs‘𝑁) = 0 ↔ 𝑁 = 0))
65necon3bbid 3050 . . . . . 6 (𝑁 ∈ ℂ → (¬ (abs‘𝑁) = 0 ↔ 𝑁 ≠ 0))
74, 6syl 17 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → (¬ (abs‘𝑁) = 0 ↔ 𝑁 ≠ 0))
82, 7mpbird 258 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → ¬ (abs‘𝑁) = 0)
9 nn0abscl 14660 . . . . . . 7 (𝑁 ∈ ℤ → (abs‘𝑁) ∈ ℕ0)
103, 9syl 17 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → (abs‘𝑁) ∈ ℕ0)
11 elnn0 11887 . . . . . 6 ((abs‘𝑁) ∈ ℕ0 ↔ ((abs‘𝑁) ∈ ℕ ∨ (abs‘𝑁) = 0))
1210, 11sylib 219 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → ((abs‘𝑁) ∈ ℕ ∨ (abs‘𝑁) = 0))
1312ord 858 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → (¬ (abs‘𝑁) ∈ ℕ → (abs‘𝑁) = 0))
148, 13mt3d 150 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → (abs‘𝑁) ∈ ℕ)
15 simprr 769 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → (𝑁 · 𝐴) = 0 )
16 oveq1 7152 . . . . . 6 ((abs‘𝑁) = 𝑁 → ((abs‘𝑁) · 𝐴) = (𝑁 · 𝐴))
1716eqeq1d 2820 . . . . 5 ((abs‘𝑁) = 𝑁 → (((abs‘𝑁) · 𝐴) = 0 ↔ (𝑁 · 𝐴) = 0 ))
1815, 17syl5ibrcom 248 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → ((abs‘𝑁) = 𝑁 → ((abs‘𝑁) · 𝐴) = 0 ))
19 simpl1 1183 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → 𝐺 ∈ Grp)
20 odcl.1 . . . . . . . 8 𝑋 = (Base‘𝐺)
21 odid.3 . . . . . . . 8 · = (.g𝐺)
22 eqid 2818 . . . . . . . 8 (invg𝐺) = (invg𝐺)
2320, 21, 22mulgneg 18184 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝐴𝑋) → (-𝑁 · 𝐴) = ((invg𝐺)‘(𝑁 · 𝐴)))
2419, 3, 1, 23syl3anc 1363 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → (-𝑁 · 𝐴) = ((invg𝐺)‘(𝑁 · 𝐴)))
2515fveq2d 6667 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → ((invg𝐺)‘(𝑁 · 𝐴)) = ((invg𝐺)‘ 0 ))
26 odid.4 . . . . . . . 8 0 = (0g𝐺)
2726, 22grpinvid 18098 . . . . . . 7 (𝐺 ∈ Grp → ((invg𝐺)‘ 0 ) = 0 )
2819, 27syl 17 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → ((invg𝐺)‘ 0 ) = 0 )
2924, 25, 283eqtrd 2857 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → (-𝑁 · 𝐴) = 0 )
30 oveq1 7152 . . . . . 6 ((abs‘𝑁) = -𝑁 → ((abs‘𝑁) · 𝐴) = (-𝑁 · 𝐴))
3130eqeq1d 2820 . . . . 5 ((abs‘𝑁) = -𝑁 → (((abs‘𝑁) · 𝐴) = 0 ↔ (-𝑁 · 𝐴) = 0 ))
3229, 31syl5ibrcom 248 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → ((abs‘𝑁) = -𝑁 → ((abs‘𝑁) · 𝐴) = 0 ))
333zred 12075 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → 𝑁 ∈ ℝ)
3433absord 14763 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → ((abs‘𝑁) = 𝑁 ∨ (abs‘𝑁) = -𝑁))
3518, 32, 34mpjaod 854 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → ((abs‘𝑁) · 𝐴) = 0 )
36 odcl.2 . . . 4 𝑂 = (od‘𝐺)
3720, 36, 21, 26odlem2 18596 . . 3 ((𝐴𝑋 ∧ (abs‘𝑁) ∈ ℕ ∧ ((abs‘𝑁) · 𝐴) = 0 ) → (𝑂𝐴) ∈ (1...(abs‘𝑁)))
381, 14, 35, 37syl3anc 1363 . 2 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → (𝑂𝐴) ∈ (1...(abs‘𝑁)))
39 elfznn 12924 . 2 ((𝑂𝐴) ∈ (1...(abs‘𝑁)) → (𝑂𝐴) ∈ ℕ)
4038, 39syl 17 1 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → (𝑂𝐴) ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  wo 841  w3a 1079   = wceq 1528  wcel 2105  wne 3013  cfv 6348  (class class class)co 7145  cc 10523  0cc0 10525  1c1 10526  -cneg 10859  cn 11626  0cn0 11885  cz 11969  ...cfz 12880  abscabs 14581  Basecbs 16471  0gc0g 16701  Grpcgrp 18041  invgcminusg 18042  .gcmg 18162  odcod 18581
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-sup 8894  df-inf 8895  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12881  df-seq 13358  df-exp 13418  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-0g 16703  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-grp 18044  df-minusg 18045  df-mulg 18163  df-od 18585
This theorem is referenced by:  oddvds  18604
  Copyright terms: Public domain W3C validator