MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odrngstr Structured version   Visualization version   GIF version

Theorem odrngstr 16113
Description: Functionality of an ordered metric ring. (Contributed by Mario Carneiro, 20-Aug-2015.) (Proof shortened by AV, 15-Sep-2021.)
Hypothesis
Ref Expression
odrngstr.w 𝑊 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(TopSet‘ndx), 𝐽⟩, ⟨(le‘ndx), ⟩, ⟨(dist‘ndx), 𝐷⟩})
Assertion
Ref Expression
odrngstr 𝑊 Struct ⟨1, 12⟩

Proof of Theorem odrngstr
StepHypRef Expression
1 odrngstr.w . 2 𝑊 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(TopSet‘ndx), 𝐽⟩, ⟨(le‘ndx), ⟩, ⟨(dist‘ndx), 𝐷⟩})
2 eqid 2651 . . . 4 {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩}
32rngstr 16047 . . 3 {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} Struct ⟨1, 3⟩
4 9nn 11230 . . . 4 9 ∈ ℕ
5 tsetndx 16087 . . . 4 (TopSet‘ndx) = 9
6 9lt10 11711 . . . 4 9 < 10
7 10nn 11552 . . . 4 10 ∈ ℕ
8 plendx 16094 . . . 4 (le‘ndx) = 10
9 1nn0 11346 . . . . 5 1 ∈ ℕ0
10 0nn0 11345 . . . . 5 0 ∈ ℕ0
11 2nn 11223 . . . . 5 2 ∈ ℕ
12 2pos 11150 . . . . 5 0 < 2
139, 10, 11, 12declt 11568 . . . 4 10 < 12
149, 11decnncl 11556 . . . 4 12 ∈ ℕ
15 dsndx 16109 . . . 4 (dist‘ndx) = 12
164, 5, 6, 7, 8, 13, 14, 15strle3 16022 . . 3 {⟨(TopSet‘ndx), 𝐽⟩, ⟨(le‘ndx), ⟩, ⟨(dist‘ndx), 𝐷⟩} Struct ⟨9, 12⟩
17 3lt9 11265 . . 3 3 < 9
183, 16, 17strleun 16019 . 2 ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(TopSet‘ndx), 𝐽⟩, ⟨(le‘ndx), ⟩, ⟨(dist‘ndx), 𝐷⟩}) Struct ⟨1, 12⟩
191, 18eqbrtri 4706 1 𝑊 Struct ⟨1, 12⟩
Colors of variables: wff setvar class
Syntax hints:   = wceq 1523  cun 3605  {ctp 4214  cop 4216   class class class wbr 4685  cfv 5926  0cc0 9974  1c1 9975  2c2 11108  3c3 11109  9c9 11115  cdc 11531   Struct cstr 15900  ndxcnx 15901  Basecbs 15904  +gcplusg 15988  .rcmulr 15989  TopSetcts 15994  lecple 15995  distcds 15997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-fz 12365  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-plusg 16001  df-mulr 16002  df-tset 16007  df-ple 16008  df-ds 16011
This theorem is referenced by:  odrngbas  16114  odrngplusg  16115  odrngmulr  16116  odrngtset  16117  odrngle  16118  odrngds  16119  xrsstr  19808
  Copyright terms: Public domain W3C validator