MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oduclatb Structured version   Visualization version   GIF version

Theorem oduclatb 17076
Description: Being a complete lattice is self-dual. (Contributed by Stefan O'Rear, 29-Jan-2015.)
Hypothesis
Ref Expression
oduglb.d 𝐷 = (ODual‘𝑂)
Assertion
Ref Expression
oduclatb (𝑂 ∈ CLat ↔ 𝐷 ∈ CLat)

Proof of Theorem oduclatb
StepHypRef Expression
1 elex 3201 . 2 (𝑂 ∈ CLat → 𝑂 ∈ V)
2 noel 3900 . . . . 5 ¬ ((lub‘∅)‘∅) ∈ ∅
3 ssid 3608 . . . . . 6 ∅ ⊆ ∅
4 base0 15844 . . . . . . 7 ∅ = (Base‘∅)
5 eqid 2621 . . . . . . 7 (lub‘∅) = (lub‘∅)
64, 5clatlubcl 17044 . . . . . 6 ((∅ ∈ CLat ∧ ∅ ⊆ ∅) → ((lub‘∅)‘∅) ∈ ∅)
73, 6mpan2 706 . . . . 5 (∅ ∈ CLat → ((lub‘∅)‘∅) ∈ ∅)
82, 7mto 188 . . . 4 ¬ ∅ ∈ CLat
9 oduglb.d . . . . . 6 𝐷 = (ODual‘𝑂)
10 fvprc 6147 . . . . . 6 𝑂 ∈ V → (ODual‘𝑂) = ∅)
119, 10syl5eq 2667 . . . . 5 𝑂 ∈ V → 𝐷 = ∅)
1211eleq1d 2683 . . . 4 𝑂 ∈ V → (𝐷 ∈ CLat ↔ ∅ ∈ CLat))
138, 12mtbiri 317 . . 3 𝑂 ∈ V → ¬ 𝐷 ∈ CLat)
1413con4i 113 . 2 (𝐷 ∈ CLat → 𝑂 ∈ V)
159oduposb 17068 . . . 4 (𝑂 ∈ V → (𝑂 ∈ Poset ↔ 𝐷 ∈ Poset))
16 ancom 466 . . . . 5 ((dom (lub‘𝑂) = 𝒫 (Base‘𝑂) ∧ dom (glb‘𝑂) = 𝒫 (Base‘𝑂)) ↔ (dom (glb‘𝑂) = 𝒫 (Base‘𝑂) ∧ dom (lub‘𝑂) = 𝒫 (Base‘𝑂)))
17 eqid 2621 . . . . . . . . 9 (glb‘𝑂) = (glb‘𝑂)
189, 17odulub 17073 . . . . . . . 8 (𝑂 ∈ V → (glb‘𝑂) = (lub‘𝐷))
1918dmeqd 5291 . . . . . . 7 (𝑂 ∈ V → dom (glb‘𝑂) = dom (lub‘𝐷))
2019eqeq1d 2623 . . . . . 6 (𝑂 ∈ V → (dom (glb‘𝑂) = 𝒫 (Base‘𝑂) ↔ dom (lub‘𝐷) = 𝒫 (Base‘𝑂)))
21 eqid 2621 . . . . . . . . 9 (lub‘𝑂) = (lub‘𝑂)
229, 21oduglb 17071 . . . . . . . 8 (𝑂 ∈ V → (lub‘𝑂) = (glb‘𝐷))
2322dmeqd 5291 . . . . . . 7 (𝑂 ∈ V → dom (lub‘𝑂) = dom (glb‘𝐷))
2423eqeq1d 2623 . . . . . 6 (𝑂 ∈ V → (dom (lub‘𝑂) = 𝒫 (Base‘𝑂) ↔ dom (glb‘𝐷) = 𝒫 (Base‘𝑂)))
2520, 24anbi12d 746 . . . . 5 (𝑂 ∈ V → ((dom (glb‘𝑂) = 𝒫 (Base‘𝑂) ∧ dom (lub‘𝑂) = 𝒫 (Base‘𝑂)) ↔ (dom (lub‘𝐷) = 𝒫 (Base‘𝑂) ∧ dom (glb‘𝐷) = 𝒫 (Base‘𝑂))))
2616, 25syl5bb 272 . . . 4 (𝑂 ∈ V → ((dom (lub‘𝑂) = 𝒫 (Base‘𝑂) ∧ dom (glb‘𝑂) = 𝒫 (Base‘𝑂)) ↔ (dom (lub‘𝐷) = 𝒫 (Base‘𝑂) ∧ dom (glb‘𝐷) = 𝒫 (Base‘𝑂))))
2715, 26anbi12d 746 . . 3 (𝑂 ∈ V → ((𝑂 ∈ Poset ∧ (dom (lub‘𝑂) = 𝒫 (Base‘𝑂) ∧ dom (glb‘𝑂) = 𝒫 (Base‘𝑂))) ↔ (𝐷 ∈ Poset ∧ (dom (lub‘𝐷) = 𝒫 (Base‘𝑂) ∧ dom (glb‘𝐷) = 𝒫 (Base‘𝑂)))))
28 eqid 2621 . . . 4 (Base‘𝑂) = (Base‘𝑂)
2928, 21, 17isclat 17041 . . 3 (𝑂 ∈ CLat ↔ (𝑂 ∈ Poset ∧ (dom (lub‘𝑂) = 𝒫 (Base‘𝑂) ∧ dom (glb‘𝑂) = 𝒫 (Base‘𝑂))))
309, 28odubas 17065 . . . 4 (Base‘𝑂) = (Base‘𝐷)
31 eqid 2621 . . . 4 (lub‘𝐷) = (lub‘𝐷)
32 eqid 2621 . . . 4 (glb‘𝐷) = (glb‘𝐷)
3330, 31, 32isclat 17041 . . 3 (𝐷 ∈ CLat ↔ (𝐷 ∈ Poset ∧ (dom (lub‘𝐷) = 𝒫 (Base‘𝑂) ∧ dom (glb‘𝐷) = 𝒫 (Base‘𝑂))))
3427, 29, 333bitr4g 303 . 2 (𝑂 ∈ V → (𝑂 ∈ CLat ↔ 𝐷 ∈ CLat))
351, 14, 34pm5.21nii 368 1 (𝑂 ∈ CLat ↔ 𝐷 ∈ CLat)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 196  wa 384   = wceq 1480  wcel 1987  Vcvv 3189  wss 3559  c0 3896  𝒫 cpw 4135  dom cdm 5079  cfv 5852  Basecbs 15792  Posetcpo 16872  lubclub 16874  glbcglb 16875  CLatccla 17039  ODualcodu 17060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-er 7694  df-en 7908  df-dom 7909  df-sdom 7910  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-nn 10973  df-2 11031  df-3 11032  df-4 11033  df-5 11034  df-6 11035  df-7 11036  df-8 11037  df-9 11038  df-dec 11446  df-ndx 15795  df-slot 15796  df-base 15797  df-sets 15798  df-ple 15893  df-preset 16860  df-poset 16878  df-lub 16906  df-glb 16907  df-clat 17040  df-odu 17061
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator