MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odudlatb Structured version   Visualization version   GIF version

Theorem odudlatb 17794
Description: The dual of a distributive lattice is a distributive lattice and conversely. (Contributed by Stefan O'Rear, 30-Jan-2015.)
Hypothesis
Ref Expression
odudlat.d 𝐷 = (ODual‘𝐾)
Assertion
Ref Expression
odudlatb (𝐾𝑉 → (𝐾 ∈ DLat ↔ 𝐷 ∈ DLat))

Proof of Theorem odudlatb
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2818 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
2 eqid 2818 . . . . . 6 (join‘𝐾) = (join‘𝐾)
3 eqid 2818 . . . . . 6 (meet‘𝐾) = (meet‘𝐾)
41, 2, 3latdisd 17788 . . . . 5 (𝐾 ∈ Lat → (∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)∀𝑧 ∈ (Base‘𝐾)(𝑥(join‘𝐾)(𝑦(meet‘𝐾)𝑧)) = ((𝑥(join‘𝐾)𝑦)(meet‘𝐾)(𝑥(join‘𝐾)𝑧)) ↔ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)∀𝑧 ∈ (Base‘𝐾)(𝑥(meet‘𝐾)(𝑦(join‘𝐾)𝑧)) = ((𝑥(meet‘𝐾)𝑦)(join‘𝐾)(𝑥(meet‘𝐾)𝑧))))
54bicomd 224 . . . 4 (𝐾 ∈ Lat → (∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)∀𝑧 ∈ (Base‘𝐾)(𝑥(meet‘𝐾)(𝑦(join‘𝐾)𝑧)) = ((𝑥(meet‘𝐾)𝑦)(join‘𝐾)(𝑥(meet‘𝐾)𝑧)) ↔ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)∀𝑧 ∈ (Base‘𝐾)(𝑥(join‘𝐾)(𝑦(meet‘𝐾)𝑧)) = ((𝑥(join‘𝐾)𝑦)(meet‘𝐾)(𝑥(join‘𝐾)𝑧))))
65pm5.32i 575 . . 3 ((𝐾 ∈ Lat ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)∀𝑧 ∈ (Base‘𝐾)(𝑥(meet‘𝐾)(𝑦(join‘𝐾)𝑧)) = ((𝑥(meet‘𝐾)𝑦)(join‘𝐾)(𝑥(meet‘𝐾)𝑧))) ↔ (𝐾 ∈ Lat ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)∀𝑧 ∈ (Base‘𝐾)(𝑥(join‘𝐾)(𝑦(meet‘𝐾)𝑧)) = ((𝑥(join‘𝐾)𝑦)(meet‘𝐾)(𝑥(join‘𝐾)𝑧))))
7 odudlat.d . . . . 5 𝐷 = (ODual‘𝐾)
87odulatb 17741 . . . 4 (𝐾𝑉 → (𝐾 ∈ Lat ↔ 𝐷 ∈ Lat))
98anbi1d 629 . . 3 (𝐾𝑉 → ((𝐾 ∈ Lat ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)∀𝑧 ∈ (Base‘𝐾)(𝑥(join‘𝐾)(𝑦(meet‘𝐾)𝑧)) = ((𝑥(join‘𝐾)𝑦)(meet‘𝐾)(𝑥(join‘𝐾)𝑧))) ↔ (𝐷 ∈ Lat ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)∀𝑧 ∈ (Base‘𝐾)(𝑥(join‘𝐾)(𝑦(meet‘𝐾)𝑧)) = ((𝑥(join‘𝐾)𝑦)(meet‘𝐾)(𝑥(join‘𝐾)𝑧)))))
106, 9syl5bb 284 . 2 (𝐾𝑉 → ((𝐾 ∈ Lat ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)∀𝑧 ∈ (Base‘𝐾)(𝑥(meet‘𝐾)(𝑦(join‘𝐾)𝑧)) = ((𝑥(meet‘𝐾)𝑦)(join‘𝐾)(𝑥(meet‘𝐾)𝑧))) ↔ (𝐷 ∈ Lat ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)∀𝑧 ∈ (Base‘𝐾)(𝑥(join‘𝐾)(𝑦(meet‘𝐾)𝑧)) = ((𝑥(join‘𝐾)𝑦)(meet‘𝐾)(𝑥(join‘𝐾)𝑧)))))
111, 2, 3isdlat 17791 . 2 (𝐾 ∈ DLat ↔ (𝐾 ∈ Lat ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)∀𝑧 ∈ (Base‘𝐾)(𝑥(meet‘𝐾)(𝑦(join‘𝐾)𝑧)) = ((𝑥(meet‘𝐾)𝑦)(join‘𝐾)(𝑥(meet‘𝐾)𝑧))))
127, 1odubas 17731 . . 3 (Base‘𝐾) = (Base‘𝐷)
137, 3odujoin 17740 . . 3 (meet‘𝐾) = (join‘𝐷)
147, 2odumeet 17738 . . 3 (join‘𝐾) = (meet‘𝐷)
1512, 13, 14isdlat 17791 . 2 (𝐷 ∈ DLat ↔ (𝐷 ∈ Lat ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)∀𝑧 ∈ (Base‘𝐾)(𝑥(join‘𝐾)(𝑦(meet‘𝐾)𝑧)) = ((𝑥(join‘𝐾)𝑦)(meet‘𝐾)(𝑥(join‘𝐾)𝑧))))
1610, 11, 153bitr4g 315 1 (𝐾𝑉 → (𝐾 ∈ DLat ↔ 𝐷 ∈ DLat))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1528  wcel 2105  wral 3135  cfv 6348  (class class class)co 7145  Basecbs 16471  joincjn 17542  meetcmee 17543  Latclat 17643  ODualcodu 17726  DLatcdlat 17789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-dec 12087  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ple 16573  df-proset 17526  df-poset 17544  df-lub 17572  df-glb 17573  df-join 17574  df-meet 17575  df-lat 17644  df-odu 17727  df-dlat 17790
This theorem is referenced by:  dlatjmdi  17795
  Copyright terms: Public domain W3C validator