MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oduleval Structured version   Visualization version   GIF version

Theorem oduleval 17052
Description: Value of the less-equal relation in an order dual structure. (Contributed by Stefan O'Rear, 29-Jan-2015.)
Hypotheses
Ref Expression
oduval.d 𝐷 = (ODual‘𝑂)
oduval.l = (le‘𝑂)
Assertion
Ref Expression
oduleval = (le‘𝐷)

Proof of Theorem oduleval
StepHypRef Expression
1 fvex 6158 . . . . 5 (le‘𝑂) ∈ V
21cnvex 7060 . . . 4 (le‘𝑂) ∈ V
3 pleid 15970 . . . . 5 le = Slot (le‘ndx)
43setsid 15835 . . . 4 ((𝑂 ∈ V ∧ (le‘𝑂) ∈ V) → (le‘𝑂) = (le‘(𝑂 sSet ⟨(le‘ndx), (le‘𝑂)⟩)))
52, 4mpan2 706 . . 3 (𝑂 ∈ V → (le‘𝑂) = (le‘(𝑂 sSet ⟨(le‘ndx), (le‘𝑂)⟩)))
63str0 15832 . . . 4 ∅ = (le‘∅)
7 fvprc 6142 . . . . . 6 𝑂 ∈ V → (le‘𝑂) = ∅)
87cnveqd 5258 . . . . 5 𝑂 ∈ V → (le‘𝑂) = ∅)
9 cnv0 5494 . . . . 5 ∅ = ∅
108, 9syl6eq 2671 . . . 4 𝑂 ∈ V → (le‘𝑂) = ∅)
11 reldmsets 15807 . . . . . 6 Rel dom sSet
1211ovprc1 6637 . . . . 5 𝑂 ∈ V → (𝑂 sSet ⟨(le‘ndx), (le‘𝑂)⟩) = ∅)
1312fveq2d 6152 . . . 4 𝑂 ∈ V → (le‘(𝑂 sSet ⟨(le‘ndx), (le‘𝑂)⟩)) = (le‘∅))
146, 10, 133eqtr4a 2681 . . 3 𝑂 ∈ V → (le‘𝑂) = (le‘(𝑂 sSet ⟨(le‘ndx), (le‘𝑂)⟩)))
155, 14pm2.61i 176 . 2 (le‘𝑂) = (le‘(𝑂 sSet ⟨(le‘ndx), (le‘𝑂)⟩))
16 oduval.l . . 3 = (le‘𝑂)
1716cnveqi 5257 . 2 = (le‘𝑂)
18 oduval.d . . . 4 𝐷 = (ODual‘𝑂)
19 eqid 2621 . . . 4 (le‘𝑂) = (le‘𝑂)
2018, 19oduval 17051 . . 3 𝐷 = (𝑂 sSet ⟨(le‘ndx), (le‘𝑂)⟩)
2120fveq2i 6151 . 2 (le‘𝐷) = (le‘(𝑂 sSet ⟨(le‘ndx), (le‘𝑂)⟩))
2215, 17, 213eqtr4i 2653 1 = (le‘𝐷)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1480  wcel 1987  Vcvv 3186  c0 3891  cop 4154  ccnv 5073  cfv 5847  (class class class)co 6604  ndxcnx 15778   sSet csts 15779  lecple 15869  ODualcodu 17049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-ltxr 10023  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-dec 11438  df-ndx 15784  df-slot 15785  df-sets 15787  df-ple 15882  df-odu 17050
This theorem is referenced by:  oduleg  17053  odupos  17056  oduposb  17057  oduglb  17060  odulub  17062  posglbd  17071  oduprs  29438  odutos  29445  ordtcnvNEW  29745  ordtrest2NEW  29748
  Copyright terms: Public domain W3C validator