![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oduposb | Structured version Visualization version GIF version |
Description: Being a poset is a self-dual property. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
Ref | Expression |
---|---|
odupos.d | ⊢ 𝐷 = (ODual‘𝑂) |
Ref | Expression |
---|---|
oduposb | ⊢ (𝑂 ∈ 𝑉 → (𝑂 ∈ Poset ↔ 𝐷 ∈ Poset)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | odupos.d | . . 3 ⊢ 𝐷 = (ODual‘𝑂) | |
2 | 1 | odupos 17182 | . 2 ⊢ (𝑂 ∈ Poset → 𝐷 ∈ Poset) |
3 | eqid 2651 | . . . 4 ⊢ (ODual‘𝐷) = (ODual‘𝐷) | |
4 | 3 | odupos 17182 | . . 3 ⊢ (𝐷 ∈ Poset → (ODual‘𝐷) ∈ Poset) |
5 | fvexd 6241 | . . . 4 ⊢ (𝑂 ∈ 𝑉 → (ODual‘𝐷) ∈ V) | |
6 | id 22 | . . . 4 ⊢ (𝑂 ∈ 𝑉 → 𝑂 ∈ 𝑉) | |
7 | eqid 2651 | . . . . . . 7 ⊢ (Base‘𝑂) = (Base‘𝑂) | |
8 | 1, 7 | odubas 17180 | . . . . . 6 ⊢ (Base‘𝑂) = (Base‘𝐷) |
9 | 3, 8 | odubas 17180 | . . . . 5 ⊢ (Base‘𝑂) = (Base‘(ODual‘𝐷)) |
10 | 9 | a1i 11 | . . . 4 ⊢ (𝑂 ∈ 𝑉 → (Base‘𝑂) = (Base‘(ODual‘𝐷))) |
11 | eqidd 2652 | . . . 4 ⊢ (𝑂 ∈ 𝑉 → (Base‘𝑂) = (Base‘𝑂)) | |
12 | eqid 2651 | . . . . . . . . . 10 ⊢ (le‘𝑂) = (le‘𝑂) | |
13 | 1, 12 | oduleval 17178 | . . . . . . . . 9 ⊢ ◡(le‘𝑂) = (le‘𝐷) |
14 | 3, 13 | oduleval 17178 | . . . . . . . 8 ⊢ ◡◡(le‘𝑂) = (le‘(ODual‘𝐷)) |
15 | 14 | eqcomi 2660 | . . . . . . 7 ⊢ (le‘(ODual‘𝐷)) = ◡◡(le‘𝑂) |
16 | 15 | breqi 4691 | . . . . . 6 ⊢ (𝑎(le‘(ODual‘𝐷))𝑏 ↔ 𝑎◡◡(le‘𝑂)𝑏) |
17 | vex 3234 | . . . . . . 7 ⊢ 𝑎 ∈ V | |
18 | vex 3234 | . . . . . . 7 ⊢ 𝑏 ∈ V | |
19 | 17, 18 | brcnv 5337 | . . . . . 6 ⊢ (𝑎◡◡(le‘𝑂)𝑏 ↔ 𝑏◡(le‘𝑂)𝑎) |
20 | 18, 17 | brcnv 5337 | . . . . . 6 ⊢ (𝑏◡(le‘𝑂)𝑎 ↔ 𝑎(le‘𝑂)𝑏) |
21 | 16, 19, 20 | 3bitri 286 | . . . . 5 ⊢ (𝑎(le‘(ODual‘𝐷))𝑏 ↔ 𝑎(le‘𝑂)𝑏) |
22 | 21 | a1i 11 | . . . 4 ⊢ ((𝑂 ∈ 𝑉 ∧ (𝑎 ∈ (Base‘𝑂) ∧ 𝑏 ∈ (Base‘𝑂))) → (𝑎(le‘(ODual‘𝐷))𝑏 ↔ 𝑎(le‘𝑂)𝑏)) |
23 | 5, 6, 10, 11, 22 | pospropd 17181 | . . 3 ⊢ (𝑂 ∈ 𝑉 → ((ODual‘𝐷) ∈ Poset ↔ 𝑂 ∈ Poset)) |
24 | 4, 23 | syl5ib 234 | . 2 ⊢ (𝑂 ∈ 𝑉 → (𝐷 ∈ Poset → 𝑂 ∈ Poset)) |
25 | 2, 24 | impbid2 216 | 1 ⊢ (𝑂 ∈ 𝑉 → (𝑂 ∈ Poset ↔ 𝐷 ∈ Poset)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1523 ∈ wcel 2030 Vcvv 3231 class class class wbr 4685 ◡ccnv 5142 ‘cfv 5926 Basecbs 15904 lecple 15995 Posetcpo 16987 ODualcodu 17175 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-2 11117 df-3 11118 df-4 11119 df-5 11120 df-6 11121 df-7 11122 df-8 11123 df-9 11124 df-dec 11532 df-ndx 15907 df-slot 15908 df-base 15910 df-sets 15911 df-ple 16008 df-preset 16975 df-poset 16993 df-odu 17176 |
This theorem is referenced by: odulatb 17190 oduclatb 17191 |
Copyright terms: Public domain | W3C validator |