Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  odz2prm2pw Structured version   Visualization version   GIF version

Theorem odz2prm2pw 40771
Description: Any power of two is coprime to any prime not being two. (Contributed by AV, 25-Jul-2021.)
Assertion
Ref Expression
odz2prm2pw (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (((2↑(2↑𝑁)) mod 𝑃) ≠ 1 ∧ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1)) → ((od𝑃)‘2) = (2↑(𝑁 + 1)))

Proof of Theorem odz2prm2pw
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 eldifi 3710 . . . . . 6 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ)
2 2nn 11129 . . . . . . . . 9 2 ∈ ℕ
32a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ → 2 ∈ ℕ)
4 2nn0 11253 . . . . . . . . . 10 2 ∈ ℕ0
54a1i 11 . . . . . . . . 9 (𝑁 ∈ ℕ → 2 ∈ ℕ0)
6 peano2nn 10976 . . . . . . . . . 10 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ)
76nnnn0d 11295 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ0)
85, 7nn0expcld 12971 . . . . . . . 8 (𝑁 ∈ ℕ → (2↑(𝑁 + 1)) ∈ ℕ0)
93, 8nnexpcld 12970 . . . . . . 7 (𝑁 ∈ ℕ → (2↑(2↑(𝑁 + 1))) ∈ ℕ)
109nnzd 11425 . . . . . 6 (𝑁 ∈ ℕ → (2↑(2↑(𝑁 + 1))) ∈ ℤ)
11 modprm1div 15426 . . . . . 6 ((𝑃 ∈ ℙ ∧ (2↑(2↑(𝑁 + 1))) ∈ ℤ) → (((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1 ↔ 𝑃 ∥ ((2↑(2↑(𝑁 + 1))) − 1)))
121, 10, 11syl2anr 495 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1 ↔ 𝑃 ∥ ((2↑(2↑(𝑁 + 1))) − 1)))
13 prmnn 15312 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
141, 13syl 17 . . . . . . . 8 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℕ)
1514adantl 482 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 𝑃 ∈ ℕ)
16 2z 11353 . . . . . . . 8 2 ∈ ℤ
1716a1i 11 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 2 ∈ ℤ)
18 eldifsn 4287 . . . . . . . . . 10 (𝑃 ∈ (ℙ ∖ {2}) ↔ (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2))
19 simpr 477 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑃 ≠ 2) → 𝑃 ≠ 2)
2019necomd 2845 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑃 ≠ 2) → 2 ≠ 𝑃)
2118, 20sylbi 207 . . . . . . . . 9 (𝑃 ∈ (ℙ ∖ {2}) → 2 ≠ 𝑃)
22 2prm 15329 . . . . . . . . . 10 2 ∈ ℙ
23 prmrp 15348 . . . . . . . . . 10 ((2 ∈ ℙ ∧ 𝑃 ∈ ℙ) → ((2 gcd 𝑃) = 1 ↔ 2 ≠ 𝑃))
2422, 1, 23sylancr 694 . . . . . . . . 9 (𝑃 ∈ (ℙ ∖ {2}) → ((2 gcd 𝑃) = 1 ↔ 2 ≠ 𝑃))
2521, 24mpbird 247 . . . . . . . 8 (𝑃 ∈ (ℙ ∖ {2}) → (2 gcd 𝑃) = 1)
2625adantl 482 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (2 gcd 𝑃) = 1)
2715, 17, 263jca 1240 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝑃 ∈ ℕ ∧ 2 ∈ ℤ ∧ (2 gcd 𝑃) = 1))
288adantr 481 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (2↑(𝑁 + 1)) ∈ ℕ0)
29 odzdvds 15424 . . . . . 6 (((𝑃 ∈ ℕ ∧ 2 ∈ ℤ ∧ (2 gcd 𝑃) = 1) ∧ (2↑(𝑁 + 1)) ∈ ℕ0) → (𝑃 ∥ ((2↑(2↑(𝑁 + 1))) − 1) ↔ ((od𝑃)‘2) ∥ (2↑(𝑁 + 1))))
3027, 28, 29syl2anc 692 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝑃 ∥ ((2↑(2↑(𝑁 + 1))) − 1) ↔ ((od𝑃)‘2) ∥ (2↑(𝑁 + 1))))
3112, 30bitrd 268 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1 ↔ ((od𝑃)‘2) ∥ (2↑(𝑁 + 1))))
32 nnnn0 11243 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
335, 32nn0expcld 12971 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (2↑𝑁) ∈ ℕ0)
343, 33nnexpcld 12970 . . . . . . . . . 10 (𝑁 ∈ ℕ → (2↑(2↑𝑁)) ∈ ℕ)
3534nnzd 11425 . . . . . . . . 9 (𝑁 ∈ ℕ → (2↑(2↑𝑁)) ∈ ℤ)
36 modprm1div 15426 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ (2↑(2↑𝑁)) ∈ ℤ) → (((2↑(2↑𝑁)) mod 𝑃) = 1 ↔ 𝑃 ∥ ((2↑(2↑𝑁)) − 1)))
371, 35, 36syl2anr 495 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((2↑(2↑𝑁)) mod 𝑃) = 1 ↔ 𝑃 ∥ ((2↑(2↑𝑁)) − 1)))
3833adantr 481 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (2↑𝑁) ∈ ℕ0)
39 odzdvds 15424 . . . . . . . . 9 (((𝑃 ∈ ℕ ∧ 2 ∈ ℤ ∧ (2 gcd 𝑃) = 1) ∧ (2↑𝑁) ∈ ℕ0) → (𝑃 ∥ ((2↑(2↑𝑁)) − 1) ↔ ((od𝑃)‘2) ∥ (2↑𝑁)))
4027, 38, 39syl2anc 692 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝑃 ∥ ((2↑(2↑𝑁)) − 1) ↔ ((od𝑃)‘2) ∥ (2↑𝑁)))
4137, 40bitrd 268 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((2↑(2↑𝑁)) mod 𝑃) = 1 ↔ ((od𝑃)‘2) ∥ (2↑𝑁)))
4241necon3abid 2826 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((2↑(2↑𝑁)) mod 𝑃) ≠ 1 ↔ ¬ ((od𝑃)‘2) ∥ (2↑𝑁)))
43 odzcl 15422 . . . . . . . . . 10 ((𝑃 ∈ ℕ ∧ 2 ∈ ℤ ∧ (2 gcd 𝑃) = 1) → ((od𝑃)‘2) ∈ ℕ)
4427, 43syl 17 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((od𝑃)‘2) ∈ ℕ)
457adantr 481 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝑁 + 1) ∈ ℕ0)
46 dvdsprmpweqle 15514 . . . . . . . . 9 ((2 ∈ ℙ ∧ ((od𝑃)‘2) ∈ ℕ ∧ (𝑁 + 1) ∈ ℕ0) → (((od𝑃)‘2) ∥ (2↑(𝑁 + 1)) → ∃𝑛 ∈ ℕ0 (𝑛 ≤ (𝑁 + 1) ∧ ((od𝑃)‘2) = (2↑𝑛))))
4722, 44, 45, 46mp3an2i 1426 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((od𝑃)‘2) ∥ (2↑(𝑁 + 1)) → ∃𝑛 ∈ ℕ0 (𝑛 ≤ (𝑁 + 1) ∧ ((od𝑃)‘2) = (2↑𝑛))))
48 breq1 4616 . . . . . . . . . . . . 13 (((od𝑃)‘2) = (2↑𝑛) → (((od𝑃)‘2) ∥ (2↑𝑁) ↔ (2↑𝑛) ∥ (2↑𝑁)))
4948adantl 482 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 ≤ (𝑁 + 1)) ∧ ((od𝑃)‘2) = (2↑𝑛)) → (((od𝑃)‘2) ∥ (2↑𝑁) ↔ (2↑𝑛) ∥ (2↑𝑁)))
5049notbid 308 . . . . . . . . . . 11 (((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 ≤ (𝑁 + 1)) ∧ ((od𝑃)‘2) = (2↑𝑛)) → (¬ ((od𝑃)‘2) ∥ (2↑𝑁) ↔ ¬ (2↑𝑛) ∥ (2↑𝑁)))
51 simpr 477 . . . . . . . . . . . . . 14 (((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 ≤ (𝑁 + 1)) ∧ ((od𝑃)‘2) = (2↑𝑛)) → ((od𝑃)‘2) = (2↑𝑛))
5251adantr 481 . . . . . . . . . . . . 13 ((((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 ≤ (𝑁 + 1)) ∧ ((od𝑃)‘2) = (2↑𝑛)) ∧ ¬ (2↑𝑛) ∥ (2↑𝑁)) → ((od𝑃)‘2) = (2↑𝑛))
53 nn0re 11245 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ0𝑛 ∈ ℝ)
546nnred 10979 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℝ)
5554adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝑁 + 1) ∈ ℝ)
56 leloe 10068 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℝ ∧ (𝑁 + 1) ∈ ℝ) → (𝑛 ≤ (𝑁 + 1) ↔ (𝑛 < (𝑁 + 1) ∨ 𝑛 = (𝑁 + 1))))
5753, 55, 56syl2anr 495 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) → (𝑛 ≤ (𝑁 + 1) ↔ (𝑛 < (𝑁 + 1) ∨ 𝑛 = (𝑁 + 1))))
58 simpr 477 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
59 nn0z 11344 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 ∈ ℕ0𝑛 ∈ ℤ)
6059adantl 482 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℤ)
6160adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑁 + 1)) → 𝑛 ∈ ℤ)
62 nnz 11343 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
6362adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 𝑁 ∈ ℤ)
6463adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) → 𝑁 ∈ ℤ)
6564adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑁 + 1)) → 𝑁 ∈ ℤ)
66 zleltp1 11372 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑛 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑛𝑁𝑛 < (𝑁 + 1)))
6759, 63, 66syl2anr 495 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) → (𝑛𝑁𝑛 < (𝑁 + 1)))
6867biimpar 502 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑁 + 1)) → 𝑛𝑁)
69 eluz2 11637 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ (ℤ𝑛) ↔ (𝑛 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑛𝑁))
7061, 65, 68, 69syl3anbrc 1244 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑁 + 1)) → 𝑁 ∈ (ℤ𝑛))
71 dvdsexp 14973 . . . . . . . . . . . . . . . . . . . . . 22 ((2 ∈ ℤ ∧ 𝑛 ∈ ℕ0𝑁 ∈ (ℤ𝑛)) → (2↑𝑛) ∥ (2↑𝑁))
7216, 58, 70, 71mp3an2ani 1428 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑁 + 1)) → (2↑𝑛) ∥ (2↑𝑁))
7372pm2.24d 147 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑁 + 1)) → (¬ (2↑𝑛) ∥ (2↑𝑁) → (2↑𝑛) = (2↑(𝑁 + 1))))
7473expcom 451 . . . . . . . . . . . . . . . . . . 19 (𝑛 < (𝑁 + 1) → (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) → (¬ (2↑𝑛) ∥ (2↑𝑁) → (2↑𝑛) = (2↑(𝑁 + 1)))))
75 oveq2 6612 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = (𝑁 + 1) → (2↑𝑛) = (2↑(𝑁 + 1)))
76752a1d 26 . . . . . . . . . . . . . . . . . . 19 (𝑛 = (𝑁 + 1) → (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) → (¬ (2↑𝑛) ∥ (2↑𝑁) → (2↑𝑛) = (2↑(𝑁 + 1)))))
7774, 76jaoi 394 . . . . . . . . . . . . . . . . . 18 ((𝑛 < (𝑁 + 1) ∨ 𝑛 = (𝑁 + 1)) → (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) → (¬ (2↑𝑛) ∥ (2↑𝑁) → (2↑𝑛) = (2↑(𝑁 + 1)))))
7877com12 32 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) → ((𝑛 < (𝑁 + 1) ∨ 𝑛 = (𝑁 + 1)) → (¬ (2↑𝑛) ∥ (2↑𝑁) → (2↑𝑛) = (2↑(𝑁 + 1)))))
7957, 78sylbid 230 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) → (𝑛 ≤ (𝑁 + 1) → (¬ (2↑𝑛) ∥ (2↑𝑁) → (2↑𝑛) = (2↑(𝑁 + 1)))))
8079imp 445 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 ≤ (𝑁 + 1)) → (¬ (2↑𝑛) ∥ (2↑𝑁) → (2↑𝑛) = (2↑(𝑁 + 1))))
8180adantr 481 . . . . . . . . . . . . . 14 (((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 ≤ (𝑁 + 1)) ∧ ((od𝑃)‘2) = (2↑𝑛)) → (¬ (2↑𝑛) ∥ (2↑𝑁) → (2↑𝑛) = (2↑(𝑁 + 1))))
8281imp 445 . . . . . . . . . . . . 13 ((((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 ≤ (𝑁 + 1)) ∧ ((od𝑃)‘2) = (2↑𝑛)) ∧ ¬ (2↑𝑛) ∥ (2↑𝑁)) → (2↑𝑛) = (2↑(𝑁 + 1)))
8352, 82eqtrd 2655 . . . . . . . . . . . 12 ((((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 ≤ (𝑁 + 1)) ∧ ((od𝑃)‘2) = (2↑𝑛)) ∧ ¬ (2↑𝑛) ∥ (2↑𝑁)) → ((od𝑃)‘2) = (2↑(𝑁 + 1)))
8483ex 450 . . . . . . . . . . 11 (((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 ≤ (𝑁 + 1)) ∧ ((od𝑃)‘2) = (2↑𝑛)) → (¬ (2↑𝑛) ∥ (2↑𝑁) → ((od𝑃)‘2) = (2↑(𝑁 + 1))))
8550, 84sylbid 230 . . . . . . . . . 10 (((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 ≤ (𝑁 + 1)) ∧ ((od𝑃)‘2) = (2↑𝑛)) → (¬ ((od𝑃)‘2) ∥ (2↑𝑁) → ((od𝑃)‘2) = (2↑(𝑁 + 1))))
8685expl 647 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) → ((𝑛 ≤ (𝑁 + 1) ∧ ((od𝑃)‘2) = (2↑𝑛)) → (¬ ((od𝑃)‘2) ∥ (2↑𝑁) → ((od𝑃)‘2) = (2↑(𝑁 + 1)))))
8786rexlimdva 3024 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (∃𝑛 ∈ ℕ0 (𝑛 ≤ (𝑁 + 1) ∧ ((od𝑃)‘2) = (2↑𝑛)) → (¬ ((od𝑃)‘2) ∥ (2↑𝑁) → ((od𝑃)‘2) = (2↑(𝑁 + 1)))))
8847, 87syld 47 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((od𝑃)‘2) ∥ (2↑(𝑁 + 1)) → (¬ ((od𝑃)‘2) ∥ (2↑𝑁) → ((od𝑃)‘2) = (2↑(𝑁 + 1)))))
8988com23 86 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (¬ ((od𝑃)‘2) ∥ (2↑𝑁) → (((od𝑃)‘2) ∥ (2↑(𝑁 + 1)) → ((od𝑃)‘2) = (2↑(𝑁 + 1)))))
9042, 89sylbid 230 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((2↑(2↑𝑁)) mod 𝑃) ≠ 1 → (((od𝑃)‘2) ∥ (2↑(𝑁 + 1)) → ((od𝑃)‘2) = (2↑(𝑁 + 1)))))
9190com23 86 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((od𝑃)‘2) ∥ (2↑(𝑁 + 1)) → (((2↑(2↑𝑁)) mod 𝑃) ≠ 1 → ((od𝑃)‘2) = (2↑(𝑁 + 1)))))
9231, 91sylbid 230 . . 3 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1 → (((2↑(2↑𝑁)) mod 𝑃) ≠ 1 → ((od𝑃)‘2) = (2↑(𝑁 + 1)))))
9392com23 86 . 2 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((2↑(2↑𝑁)) mod 𝑃) ≠ 1 → (((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1 → ((od𝑃)‘2) = (2↑(𝑁 + 1)))))
9493imp32 449 1 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (((2↑(2↑𝑁)) mod 𝑃) ≠ 1 ∧ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1)) → ((od𝑃)‘2) = (2↑(𝑁 + 1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  wrex 2908  cdif 3552  {csn 4148   class class class wbr 4613  cfv 5847  (class class class)co 6604  cr 9879  1c1 9881   + caddc 9883   < clt 10018  cle 10019  cmin 10210  cn 10964  2c2 11014  0cn0 11236  cz 11321  cuz 11631   mod cmo 12608  cexp 12800  cdvds 14907   gcd cgcd 15140  cprime 15309  odcodz 15392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-2o 7506  df-oadd 7509  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-sup 8292  df-inf 8293  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-n0 11237  df-xnn0 11308  df-z 11322  df-uz 11632  df-q 11733  df-rp 11777  df-fz 12269  df-fzo 12407  df-fl 12533  df-mod 12609  df-seq 12742  df-exp 12801  df-hash 13058  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-dvds 14908  df-gcd 15141  df-prm 15310  df-odz 15394  df-phi 15395  df-pc 15466
This theorem is referenced by:  fmtnoprmfac1lem  40772
  Copyright terms: Public domain W3C validator