MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oe0m1 Structured version   Visualization version   GIF version

Theorem oe0m1 8140
Description: Ordinal exponentiation with zero mantissa and nonzero exponent. Proposition 8.31(2) of [TakeutiZaring] p. 67 and its converse. (Contributed by NM, 5-Jan-2005.)
Assertion
Ref Expression
oe0m1 (𝐴 ∈ On → (∅ ∈ 𝐴 ↔ (∅ ↑o 𝐴) = ∅))

Proof of Theorem oe0m1
StepHypRef Expression
1 eloni 6196 . . 3 (𝐴 ∈ On → Ord 𝐴)
2 ordgt0ge1 8116 . . 3 (Ord 𝐴 → (∅ ∈ 𝐴 ↔ 1o𝐴))
31, 2syl 17 . 2 (𝐴 ∈ On → (∅ ∈ 𝐴 ↔ 1o𝐴))
4 oe0m 8137 . . . 4 (𝐴 ∈ On → (∅ ↑o 𝐴) = (1o𝐴))
54eqeq1d 2823 . . 3 (𝐴 ∈ On → ((∅ ↑o 𝐴) = ∅ ↔ (1o𝐴) = ∅))
6 ssdif0 4323 . . 3 (1o𝐴 ↔ (1o𝐴) = ∅)
75, 6syl6rbbr 292 . 2 (𝐴 ∈ On → (1o𝐴 ↔ (∅ ↑o 𝐴) = ∅))
83, 7bitrd 281 1 (𝐴 ∈ On → (∅ ∈ 𝐴 ↔ (∅ ↑o 𝐴) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208   = wceq 1533  wcel 2110  cdif 3933  wss 3936  c0 4291  Ord word 6185  Oncon0 6186  (class class class)co 7150  1oc1o 8089  o coe 8095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pr 5322  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3497  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-suc 6192  df-iota 6309  df-fun 6352  df-fv 6358  df-ov 7153  df-oprab 7154  df-mpo 7155  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oexp 8102
This theorem is referenced by:  oev2  8142  oesuclem  8144  oecl  8156  oewordri  8212  oelim2  8215  oeoa  8217  oeoe  8219  cantnf  9150
  Copyright terms: Public domain W3C validator