MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oecan Structured version   Visualization version   GIF version

Theorem oecan 8209
Description: Left cancellation law for ordinal exponentiation. (Contributed by NM, 6-Jan-2005.) (Revised by Mario Carneiro, 24-May-2015.)
Assertion
Ref Expression
oecan ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴o 𝐵) = (𝐴o 𝐶) ↔ 𝐵 = 𝐶))

Proof of Theorem oecan
StepHypRef Expression
1 oeordi 8207 . . . . . . 7 ((𝐶 ∈ On ∧ 𝐴 ∈ (On ∖ 2o)) → (𝐵𝐶 → (𝐴o 𝐵) ∈ (𝐴o 𝐶)))
21ancoms 461 . . . . . 6 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐶 ∈ On) → (𝐵𝐶 → (𝐴o 𝐵) ∈ (𝐴o 𝐶)))
323adant2 1127 . . . . 5 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵𝐶 → (𝐴o 𝐵) ∈ (𝐴o 𝐶)))
4 oeordi 8207 . . . . . . 7 ((𝐵 ∈ On ∧ 𝐴 ∈ (On ∖ 2o)) → (𝐶𝐵 → (𝐴o 𝐶) ∈ (𝐴o 𝐵)))
54ancoms 461 . . . . . 6 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) → (𝐶𝐵 → (𝐴o 𝐶) ∈ (𝐴o 𝐵)))
653adant3 1128 . . . . 5 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐶𝐵 → (𝐴o 𝐶) ∈ (𝐴o 𝐵)))
73, 6orim12d 961 . . . 4 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐵𝐶𝐶𝐵) → ((𝐴o 𝐵) ∈ (𝐴o 𝐶) ∨ (𝐴o 𝐶) ∈ (𝐴o 𝐵))))
87con3d 155 . . 3 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (¬ ((𝐴o 𝐵) ∈ (𝐴o 𝐶) ∨ (𝐴o 𝐶) ∈ (𝐴o 𝐵)) → ¬ (𝐵𝐶𝐶𝐵)))
9 eldifi 4102 . . . . . 6 (𝐴 ∈ (On ∖ 2o) → 𝐴 ∈ On)
1093ad2ant1 1129 . . . . 5 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → 𝐴 ∈ On)
11 simp2 1133 . . . . 5 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → 𝐵 ∈ On)
12 oecl 8156 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴o 𝐵) ∈ On)
1310, 11, 12syl2anc 586 . . . 4 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴o 𝐵) ∈ On)
14 simp3 1134 . . . . 5 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → 𝐶 ∈ On)
15 oecl 8156 . . . . 5 ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐴o 𝐶) ∈ On)
1610, 14, 15syl2anc 586 . . . 4 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴o 𝐶) ∈ On)
17 eloni 6195 . . . . 5 ((𝐴o 𝐵) ∈ On → Ord (𝐴o 𝐵))
18 eloni 6195 . . . . 5 ((𝐴o 𝐶) ∈ On → Ord (𝐴o 𝐶))
19 ordtri3 6221 . . . . 5 ((Ord (𝐴o 𝐵) ∧ Ord (𝐴o 𝐶)) → ((𝐴o 𝐵) = (𝐴o 𝐶) ↔ ¬ ((𝐴o 𝐵) ∈ (𝐴o 𝐶) ∨ (𝐴o 𝐶) ∈ (𝐴o 𝐵))))
2017, 18, 19syl2an 597 . . . 4 (((𝐴o 𝐵) ∈ On ∧ (𝐴o 𝐶) ∈ On) → ((𝐴o 𝐵) = (𝐴o 𝐶) ↔ ¬ ((𝐴o 𝐵) ∈ (𝐴o 𝐶) ∨ (𝐴o 𝐶) ∈ (𝐴o 𝐵))))
2113, 16, 20syl2anc 586 . . 3 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴o 𝐵) = (𝐴o 𝐶) ↔ ¬ ((𝐴o 𝐵) ∈ (𝐴o 𝐶) ∨ (𝐴o 𝐶) ∈ (𝐴o 𝐵))))
22 eloni 6195 . . . . 5 (𝐵 ∈ On → Ord 𝐵)
23 eloni 6195 . . . . 5 (𝐶 ∈ On → Ord 𝐶)
24 ordtri3 6221 . . . . 5 ((Ord 𝐵 ∧ Ord 𝐶) → (𝐵 = 𝐶 ↔ ¬ (𝐵𝐶𝐶𝐵)))
2522, 23, 24syl2an 597 . . . 4 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 = 𝐶 ↔ ¬ (𝐵𝐶𝐶𝐵)))
26253adant1 1126 . . 3 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 = 𝐶 ↔ ¬ (𝐵𝐶𝐶𝐵)))
278, 21, 263imtr4d 296 . 2 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴o 𝐵) = (𝐴o 𝐶) → 𝐵 = 𝐶))
28 oveq2 7158 . 2 (𝐵 = 𝐶 → (𝐴o 𝐵) = (𝐴o 𝐶))
2927, 28impbid1 227 1 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴o 𝐵) = (𝐴o 𝐶) ↔ 𝐵 = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wo 843  w3a 1083   = wceq 1533  wcel 2110  cdif 3932  Ord word 6184  Oncon0 6185  (class class class)co 7150  2oc2o 8090  o coe 8095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-omul 8101  df-oexp 8102
This theorem is referenced by:  oeword  8210  infxpenc2lem1  9439
  Copyright terms: Public domain W3C validator