MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oeeui Structured version   Visualization version   GIF version

Theorem oeeui 8230
Description: The division algorithm for ordinal exponentiation. (This version of oeeu 8231 gives an explicit expression for the unique solution of the equation, in terms of the solution 𝑃 to omeu 8213.) (Contributed by Mario Carneiro, 25-May-2015.)
Hypotheses
Ref Expression
oeeu.1 𝑋 = {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)}
oeeu.2 𝑃 = (℩𝑤𝑦 ∈ On ∃𝑧 ∈ (𝐴o 𝑋)(𝑤 = ⟨𝑦, 𝑧⟩ ∧ (((𝐴o 𝑋) ·o 𝑦) +o 𝑧) = 𝐵))
oeeu.3 𝑌 = (1st𝑃)
oeeu.4 𝑍 = (2nd𝑃)
Assertion
Ref Expression
oeeui ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → (((𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o) ∧ 𝐸 ∈ (𝐴o 𝐶)) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵) ↔ (𝐶 = 𝑋𝐷 = 𝑌𝐸 = 𝑍)))
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐴   𝑤,𝐵,𝑥,𝑦,𝑧   𝑤,𝑋,𝑦,𝑧
Allowed substitution hints:   𝐶(𝑥,𝑦,𝑧,𝑤)   𝐷(𝑥,𝑦,𝑧,𝑤)   𝑃(𝑥,𝑦,𝑧,𝑤)   𝐸(𝑥,𝑦,𝑧,𝑤)   𝑋(𝑥)   𝑌(𝑥,𝑦,𝑧,𝑤)   𝑍(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem oeeui
Dummy variables 𝑎 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldifi 4105 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ (On ∖ 2o) → 𝐴 ∈ On)
21adantr 483 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → 𝐴 ∈ On)
32ad2antrr 724 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝐴 ∈ On)
4 simprl 769 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝐶 ∈ On)
5 oecl 8164 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐴o 𝐶) ∈ On)
63, 4, 5syl2anc 586 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (𝐴o 𝐶) ∈ On)
7 om1 8170 . . . . . . . . . . . . . . 15 ((𝐴o 𝐶) ∈ On → ((𝐴o 𝐶) ·o 1o) = (𝐴o 𝐶))
86, 7syl 17 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → ((𝐴o 𝐶) ·o 1o) = (𝐴o 𝐶))
9 df1o2 8118 . . . . . . . . . . . . . . . 16 1o = {∅}
10 dif1o 8127 . . . . . . . . . . . . . . . . . . . 20 (𝐷 ∈ (𝐴 ∖ 1o) ↔ (𝐷𝐴𝐷 ≠ ∅))
1110simprbi 499 . . . . . . . . . . . . . . . . . . 19 (𝐷 ∈ (𝐴 ∖ 1o) → 𝐷 ≠ ∅)
1211ad2antll 727 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝐷 ≠ ∅)
13 eldifi 4105 . . . . . . . . . . . . . . . . . . . . 21 (𝐷 ∈ (𝐴 ∖ 1o) → 𝐷𝐴)
1413ad2antll 727 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝐷𝐴)
15 onelon 6218 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ On ∧ 𝐷𝐴) → 𝐷 ∈ On)
163, 14, 15syl2anc 586 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝐷 ∈ On)
17 on0eln0 6248 . . . . . . . . . . . . . . . . . . 19 (𝐷 ∈ On → (∅ ∈ 𝐷𝐷 ≠ ∅))
1816, 17syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (∅ ∈ 𝐷𝐷 ≠ ∅))
1912, 18mpbird 259 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → ∅ ∈ 𝐷)
2019snssd 4744 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → {∅} ⊆ 𝐷)
219, 20eqsstrid 4017 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 1o𝐷)
22 1on 8111 . . . . . . . . . . . . . . . . 17 1o ∈ On
2322a1i 11 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 1o ∈ On)
24 omwordi 8199 . . . . . . . . . . . . . . . 16 ((1o ∈ On ∧ 𝐷 ∈ On ∧ (𝐴o 𝐶) ∈ On) → (1o𝐷 → ((𝐴o 𝐶) ·o 1o) ⊆ ((𝐴o 𝐶) ·o 𝐷)))
2523, 16, 6, 24syl3anc 1367 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (1o𝐷 → ((𝐴o 𝐶) ·o 1o) ⊆ ((𝐴o 𝐶) ·o 𝐷)))
2621, 25mpd 15 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → ((𝐴o 𝐶) ·o 1o) ⊆ ((𝐴o 𝐶) ·o 𝐷))
278, 26eqsstrrd 4008 . . . . . . . . . . . . 13 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (𝐴o 𝐶) ⊆ ((𝐴o 𝐶) ·o 𝐷))
28 omcl 8163 . . . . . . . . . . . . . . . 16 (((𝐴o 𝐶) ∈ On ∧ 𝐷 ∈ On) → ((𝐴o 𝐶) ·o 𝐷) ∈ On)
296, 16, 28syl2anc 586 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → ((𝐴o 𝐶) ·o 𝐷) ∈ On)
30 simplrl 775 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝐸 ∈ (𝐴o 𝐶))
31 onelon 6218 . . . . . . . . . . . . . . . 16 (((𝐴o 𝐶) ∈ On ∧ 𝐸 ∈ (𝐴o 𝐶)) → 𝐸 ∈ On)
326, 30, 31syl2anc 586 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝐸 ∈ On)
33 oaword1 8180 . . . . . . . . . . . . . . 15 ((((𝐴o 𝐶) ·o 𝐷) ∈ On ∧ 𝐸 ∈ On) → ((𝐴o 𝐶) ·o 𝐷) ⊆ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸))
3429, 32, 33syl2anc 586 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → ((𝐴o 𝐶) ·o 𝐷) ⊆ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸))
35 simplrr 776 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)
3634, 35sseqtrd 4009 . . . . . . . . . . . . 13 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → ((𝐴o 𝐶) ·o 𝐷) ⊆ 𝐵)
3727, 36sstrd 3979 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (𝐴o 𝐶) ⊆ 𝐵)
38 oeeu.1 . . . . . . . . . . . . . . 15 𝑋 = {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)}
3938oeeulem 8229 . . . . . . . . . . . . . 14 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → (𝑋 ∈ On ∧ (𝐴o 𝑋) ⊆ 𝐵𝐵 ∈ (𝐴o suc 𝑋)))
4039simp3d 1140 . . . . . . . . . . . . 13 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → 𝐵 ∈ (𝐴o suc 𝑋))
4140ad2antrr 724 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝐵 ∈ (𝐴o suc 𝑋))
4239simp1d 1138 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → 𝑋 ∈ On)
4342ad2antrr 724 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝑋 ∈ On)
44 suceloni 7530 . . . . . . . . . . . . . . 15 (𝑋 ∈ On → suc 𝑋 ∈ On)
4543, 44syl 17 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → suc 𝑋 ∈ On)
46 oecl 8164 . . . . . . . . . . . . . 14 ((𝐴 ∈ On ∧ suc 𝑋 ∈ On) → (𝐴o suc 𝑋) ∈ On)
473, 45, 46syl2anc 586 . . . . . . . . . . . . 13 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (𝐴o suc 𝑋) ∈ On)
48 ontr2 6240 . . . . . . . . . . . . 13 (((𝐴o 𝐶) ∈ On ∧ (𝐴o suc 𝑋) ∈ On) → (((𝐴o 𝐶) ⊆ 𝐵𝐵 ∈ (𝐴o suc 𝑋)) → (𝐴o 𝐶) ∈ (𝐴o suc 𝑋)))
496, 47, 48syl2anc 586 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (((𝐴o 𝐶) ⊆ 𝐵𝐵 ∈ (𝐴o suc 𝑋)) → (𝐴o 𝐶) ∈ (𝐴o suc 𝑋)))
5037, 41, 49mp2and 697 . . . . . . . . . . 11 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (𝐴o 𝐶) ∈ (𝐴o suc 𝑋))
51 simplll 773 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝐴 ∈ (On ∖ 2o))
52 oeord 8216 . . . . . . . . . . . 12 ((𝐶 ∈ On ∧ suc 𝑋 ∈ On ∧ 𝐴 ∈ (On ∖ 2o)) → (𝐶 ∈ suc 𝑋 ↔ (𝐴o 𝐶) ∈ (𝐴o suc 𝑋)))
534, 45, 51, 52syl3anc 1367 . . . . . . . . . . 11 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (𝐶 ∈ suc 𝑋 ↔ (𝐴o 𝐶) ∈ (𝐴o suc 𝑋)))
5450, 53mpbird 259 . . . . . . . . . 10 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝐶 ∈ suc 𝑋)
55 onsssuc 6280 . . . . . . . . . . 11 ((𝐶 ∈ On ∧ 𝑋 ∈ On) → (𝐶𝑋𝐶 ∈ suc 𝑋))
564, 43, 55syl2anc 586 . . . . . . . . . 10 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (𝐶𝑋𝐶 ∈ suc 𝑋))
5754, 56mpbird 259 . . . . . . . . 9 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝐶𝑋)
5839simp2d 1139 . . . . . . . . . . . . 13 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → (𝐴o 𝑋) ⊆ 𝐵)
5958ad2antrr 724 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (𝐴o 𝑋) ⊆ 𝐵)
60 eloni 6203 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ On → Ord 𝐴)
613, 60syl 17 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → Ord 𝐴)
62 ordsucss 7535 . . . . . . . . . . . . . . . 16 (Ord 𝐴 → (𝐷𝐴 → suc 𝐷𝐴))
6361, 14, 62sylc 65 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → suc 𝐷𝐴)
64 suceloni 7530 . . . . . . . . . . . . . . . . 17 (𝐷 ∈ On → suc 𝐷 ∈ On)
6516, 64syl 17 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → suc 𝐷 ∈ On)
66 dif20el 8132 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ (On ∖ 2o) → ∅ ∈ 𝐴)
6751, 66syl 17 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → ∅ ∈ 𝐴)
68 oen0 8214 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐴) → ∅ ∈ (𝐴o 𝐶))
693, 4, 67, 68syl21anc 835 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → ∅ ∈ (𝐴o 𝐶))
70 omword 8198 . . . . . . . . . . . . . . . 16 (((suc 𝐷 ∈ On ∧ 𝐴 ∈ On ∧ (𝐴o 𝐶) ∈ On) ∧ ∅ ∈ (𝐴o 𝐶)) → (suc 𝐷𝐴 ↔ ((𝐴o 𝐶) ·o suc 𝐷) ⊆ ((𝐴o 𝐶) ·o 𝐴)))
7165, 3, 6, 69, 70syl31anc 1369 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (suc 𝐷𝐴 ↔ ((𝐴o 𝐶) ·o suc 𝐷) ⊆ ((𝐴o 𝐶) ·o 𝐴)))
7263, 71mpbid 234 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → ((𝐴o 𝐶) ·o suc 𝐷) ⊆ ((𝐴o 𝐶) ·o 𝐴))
73 oaord 8175 . . . . . . . . . . . . . . . . . 18 ((𝐸 ∈ On ∧ (𝐴o 𝐶) ∈ On ∧ ((𝐴o 𝐶) ·o 𝐷) ∈ On) → (𝐸 ∈ (𝐴o 𝐶) ↔ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) ∈ (((𝐴o 𝐶) ·o 𝐷) +o (𝐴o 𝐶))))
7432, 6, 29, 73syl3anc 1367 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (𝐸 ∈ (𝐴o 𝐶) ↔ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) ∈ (((𝐴o 𝐶) ·o 𝐷) +o (𝐴o 𝐶))))
7530, 74mpbid 234 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) ∈ (((𝐴o 𝐶) ·o 𝐷) +o (𝐴o 𝐶)))
7635, 75eqeltrrd 2916 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝐵 ∈ (((𝐴o 𝐶) ·o 𝐷) +o (𝐴o 𝐶)))
77 odi 8207 . . . . . . . . . . . . . . . . 17 (((𝐴o 𝐶) ∈ On ∧ 𝐷 ∈ On ∧ 1o ∈ On) → ((𝐴o 𝐶) ·o (𝐷 +o 1o)) = (((𝐴o 𝐶) ·o 𝐷) +o ((𝐴o 𝐶) ·o 1o)))
786, 16, 23, 77syl3anc 1367 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → ((𝐴o 𝐶) ·o (𝐷 +o 1o)) = (((𝐴o 𝐶) ·o 𝐷) +o ((𝐴o 𝐶) ·o 1o)))
79 oa1suc 8158 . . . . . . . . . . . . . . . . . 18 (𝐷 ∈ On → (𝐷 +o 1o) = suc 𝐷)
8016, 79syl 17 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (𝐷 +o 1o) = suc 𝐷)
8180oveq2d 7174 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → ((𝐴o 𝐶) ·o (𝐷 +o 1o)) = ((𝐴o 𝐶) ·o suc 𝐷))
828oveq2d 7174 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (((𝐴o 𝐶) ·o 𝐷) +o ((𝐴o 𝐶) ·o 1o)) = (((𝐴o 𝐶) ·o 𝐷) +o (𝐴o 𝐶)))
8378, 81, 823eqtr3d 2866 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → ((𝐴o 𝐶) ·o suc 𝐷) = (((𝐴o 𝐶) ·o 𝐷) +o (𝐴o 𝐶)))
8476, 83eleqtrrd 2918 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝐵 ∈ ((𝐴o 𝐶) ·o suc 𝐷))
8572, 84sseldd 3970 . . . . . . . . . . . . 13 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝐵 ∈ ((𝐴o 𝐶) ·o 𝐴))
86 oesuc 8154 . . . . . . . . . . . . . 14 ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐴o suc 𝐶) = ((𝐴o 𝐶) ·o 𝐴))
873, 4, 86syl2anc 586 . . . . . . . . . . . . 13 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (𝐴o suc 𝐶) = ((𝐴o 𝐶) ·o 𝐴))
8885, 87eleqtrrd 2918 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝐵 ∈ (𝐴o suc 𝐶))
89 oecl 8164 . . . . . . . . . . . . . 14 ((𝐴 ∈ On ∧ 𝑋 ∈ On) → (𝐴o 𝑋) ∈ On)
903, 43, 89syl2anc 586 . . . . . . . . . . . . 13 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (𝐴o 𝑋) ∈ On)
91 suceloni 7530 . . . . . . . . . . . . . . 15 (𝐶 ∈ On → suc 𝐶 ∈ On)
9291ad2antrl 726 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → suc 𝐶 ∈ On)
93 oecl 8164 . . . . . . . . . . . . . 14 ((𝐴 ∈ On ∧ suc 𝐶 ∈ On) → (𝐴o suc 𝐶) ∈ On)
943, 92, 93syl2anc 586 . . . . . . . . . . . . 13 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (𝐴o suc 𝐶) ∈ On)
95 ontr2 6240 . . . . . . . . . . . . 13 (((𝐴o 𝑋) ∈ On ∧ (𝐴o suc 𝐶) ∈ On) → (((𝐴o 𝑋) ⊆ 𝐵𝐵 ∈ (𝐴o suc 𝐶)) → (𝐴o 𝑋) ∈ (𝐴o suc 𝐶)))
9690, 94, 95syl2anc 586 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (((𝐴o 𝑋) ⊆ 𝐵𝐵 ∈ (𝐴o suc 𝐶)) → (𝐴o 𝑋) ∈ (𝐴o suc 𝐶)))
9759, 88, 96mp2and 697 . . . . . . . . . . 11 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (𝐴o 𝑋) ∈ (𝐴o suc 𝐶))
98 oeord 8216 . . . . . . . . . . . 12 ((𝑋 ∈ On ∧ suc 𝐶 ∈ On ∧ 𝐴 ∈ (On ∖ 2o)) → (𝑋 ∈ suc 𝐶 ↔ (𝐴o 𝑋) ∈ (𝐴o suc 𝐶)))
9943, 92, 51, 98syl3anc 1367 . . . . . . . . . . 11 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (𝑋 ∈ suc 𝐶 ↔ (𝐴o 𝑋) ∈ (𝐴o suc 𝐶)))
10097, 99mpbird 259 . . . . . . . . . 10 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝑋 ∈ suc 𝐶)
101 onsssuc 6280 . . . . . . . . . . 11 ((𝑋 ∈ On ∧ 𝐶 ∈ On) → (𝑋𝐶𝑋 ∈ suc 𝐶))
10243, 4, 101syl2anc 586 . . . . . . . . . 10 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (𝑋𝐶𝑋 ∈ suc 𝐶))
103100, 102mpbird 259 . . . . . . . . 9 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝑋𝐶)
10457, 103eqssd 3986 . . . . . . . 8 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝐶 = 𝑋)
105104, 16jca 514 . . . . . . 7 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (𝐶 = 𝑋𝐷 ∈ On))
106 simprl 769 . . . . . . . . 9 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → 𝐶 = 𝑋)
10742ad2antrr 724 . . . . . . . . 9 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → 𝑋 ∈ On)
108106, 107eqeltrd 2915 . . . . . . . 8 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → 𝐶 ∈ On)
1092ad2antrr 724 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → 𝐴 ∈ On)
110109, 108, 5syl2anc 586 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (𝐴o 𝐶) ∈ On)
111 simprr 771 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → 𝐷 ∈ On)
112110, 111, 28syl2anc 586 . . . . . . . . . . . . 13 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → ((𝐴o 𝐶) ·o 𝐷) ∈ On)
113 simplrl 775 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → 𝐸 ∈ (𝐴o 𝐶))
114110, 113, 31syl2anc 586 . . . . . . . . . . . . 13 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → 𝐸 ∈ On)
115112, 114, 33syl2anc 586 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → ((𝐴o 𝐶) ·o 𝐷) ⊆ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸))
116 simplrr 776 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)
117115, 116sseqtrd 4009 . . . . . . . . . . 11 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → ((𝐴o 𝐶) ·o 𝐷) ⊆ 𝐵)
11840ad2antrr 724 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → 𝐵 ∈ (𝐴o suc 𝑋))
119 suceq 6258 . . . . . . . . . . . . . . 15 (𝐶 = 𝑋 → suc 𝐶 = suc 𝑋)
120119ad2antrl 726 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → suc 𝐶 = suc 𝑋)
121120oveq2d 7174 . . . . . . . . . . . . 13 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (𝐴o suc 𝐶) = (𝐴o suc 𝑋))
122109, 108, 86syl2anc 586 . . . . . . . . . . . . 13 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (𝐴o suc 𝐶) = ((𝐴o 𝐶) ·o 𝐴))
123121, 122eqtr3d 2860 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (𝐴o suc 𝑋) = ((𝐴o 𝐶) ·o 𝐴))
124118, 123eleqtrd 2917 . . . . . . . . . . 11 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → 𝐵 ∈ ((𝐴o 𝐶) ·o 𝐴))
125 omcl 8163 . . . . . . . . . . . . 13 (((𝐴o 𝐶) ∈ On ∧ 𝐴 ∈ On) → ((𝐴o 𝐶) ·o 𝐴) ∈ On)
126110, 109, 125syl2anc 586 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → ((𝐴o 𝐶) ·o 𝐴) ∈ On)
127 ontr2 6240 . . . . . . . . . . . 12 ((((𝐴o 𝐶) ·o 𝐷) ∈ On ∧ ((𝐴o 𝐶) ·o 𝐴) ∈ On) → ((((𝐴o 𝐶) ·o 𝐷) ⊆ 𝐵𝐵 ∈ ((𝐴o 𝐶) ·o 𝐴)) → ((𝐴o 𝐶) ·o 𝐷) ∈ ((𝐴o 𝐶) ·o 𝐴)))
128112, 126, 127syl2anc 586 . . . . . . . . . . 11 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → ((((𝐴o 𝐶) ·o 𝐷) ⊆ 𝐵𝐵 ∈ ((𝐴o 𝐶) ·o 𝐴)) → ((𝐴o 𝐶) ·o 𝐷) ∈ ((𝐴o 𝐶) ·o 𝐴)))
129117, 124, 128mp2and 697 . . . . . . . . . 10 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → ((𝐴o 𝐶) ·o 𝐷) ∈ ((𝐴o 𝐶) ·o 𝐴))
13066adantr 483 . . . . . . . . . . . . 13 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → ∅ ∈ 𝐴)
131130ad2antrr 724 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → ∅ ∈ 𝐴)
132109, 108, 131, 68syl21anc 835 . . . . . . . . . . 11 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → ∅ ∈ (𝐴o 𝐶))
133 omord2 8195 . . . . . . . . . . 11 (((𝐷 ∈ On ∧ 𝐴 ∈ On ∧ (𝐴o 𝐶) ∈ On) ∧ ∅ ∈ (𝐴o 𝐶)) → (𝐷𝐴 ↔ ((𝐴o 𝐶) ·o 𝐷) ∈ ((𝐴o 𝐶) ·o 𝐴)))
134111, 109, 110, 132, 133syl31anc 1369 . . . . . . . . . 10 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (𝐷𝐴 ↔ ((𝐴o 𝐶) ·o 𝐷) ∈ ((𝐴o 𝐶) ·o 𝐴)))
135129, 134mpbird 259 . . . . . . . . 9 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → 𝐷𝐴)
136106oveq2d 7174 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (𝐴o 𝐶) = (𝐴o 𝑋))
13758ad2antrr 724 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (𝐴o 𝑋) ⊆ 𝐵)
138136, 137eqsstrd 4007 . . . . . . . . . . 11 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (𝐴o 𝐶) ⊆ 𝐵)
139 eldifi 4105 . . . . . . . . . . . . . 14 (𝐵 ∈ (On ∖ 1o) → 𝐵 ∈ On)
140139adantl 484 . . . . . . . . . . . . 13 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → 𝐵 ∈ On)
141140ad2antrr 724 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → 𝐵 ∈ On)
142 ontri1 6227 . . . . . . . . . . . 12 (((𝐴o 𝐶) ∈ On ∧ 𝐵 ∈ On) → ((𝐴o 𝐶) ⊆ 𝐵 ↔ ¬ 𝐵 ∈ (𝐴o 𝐶)))
143110, 141, 142syl2anc 586 . . . . . . . . . . 11 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → ((𝐴o 𝐶) ⊆ 𝐵 ↔ ¬ 𝐵 ∈ (𝐴o 𝐶)))
144138, 143mpbid 234 . . . . . . . . . 10 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → ¬ 𝐵 ∈ (𝐴o 𝐶))
145 om0 8144 . . . . . . . . . . . . . . . . 17 ((𝐴o 𝐶) ∈ On → ((𝐴o 𝐶) ·o ∅) = ∅)
146110, 145syl 17 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → ((𝐴o 𝐶) ·o ∅) = ∅)
147146oveq1d 7173 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (((𝐴o 𝐶) ·o ∅) +o 𝐸) = (∅ +o 𝐸))
148 oa0r 8165 . . . . . . . . . . . . . . . 16 (𝐸 ∈ On → (∅ +o 𝐸) = 𝐸)
149114, 148syl 17 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (∅ +o 𝐸) = 𝐸)
150147, 149eqtrd 2858 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (((𝐴o 𝐶) ·o ∅) +o 𝐸) = 𝐸)
151150, 113eqeltrd 2915 . . . . . . . . . . . . 13 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (((𝐴o 𝐶) ·o ∅) +o 𝐸) ∈ (𝐴o 𝐶))
152 oveq2 7166 . . . . . . . . . . . . . . 15 (𝐷 = ∅ → ((𝐴o 𝐶) ·o 𝐷) = ((𝐴o 𝐶) ·o ∅))
153152oveq1d 7173 . . . . . . . . . . . . . 14 (𝐷 = ∅ → (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = (((𝐴o 𝐶) ·o ∅) +o 𝐸))
154153eleq1d 2899 . . . . . . . . . . . . 13 (𝐷 = ∅ → ((((𝐴o 𝐶) ·o 𝐷) +o 𝐸) ∈ (𝐴o 𝐶) ↔ (((𝐴o 𝐶) ·o ∅) +o 𝐸) ∈ (𝐴o 𝐶)))
155151, 154syl5ibrcom 249 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (𝐷 = ∅ → (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) ∈ (𝐴o 𝐶)))
156116eleq1d 2899 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → ((((𝐴o 𝐶) ·o 𝐷) +o 𝐸) ∈ (𝐴o 𝐶) ↔ 𝐵 ∈ (𝐴o 𝐶)))
157155, 156sylibd 241 . . . . . . . . . . 11 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (𝐷 = ∅ → 𝐵 ∈ (𝐴o 𝐶)))
158157necon3bd 3032 . . . . . . . . . 10 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (¬ 𝐵 ∈ (𝐴o 𝐶) → 𝐷 ≠ ∅))
159144, 158mpd 15 . . . . . . . . 9 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → 𝐷 ≠ ∅)
160135, 159, 10sylanbrc 585 . . . . . . . 8 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → 𝐷 ∈ (𝐴 ∖ 1o))
161108, 160jca 514 . . . . . . 7 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o)))
162105, 161impbida 799 . . . . . 6 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) → ((𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o)) ↔ (𝐶 = 𝑋𝐷 ∈ On)))
163162ex 415 . . . . 5 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → ((𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵) → ((𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o)) ↔ (𝐶 = 𝑋𝐷 ∈ On))))
164163pm5.32rd 580 . . . 4 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → (((𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ↔ ((𝐶 = 𝑋𝐷 ∈ On) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵))))
165 anass 471 . . . 4 (((𝐶 = 𝑋𝐷 ∈ On) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ↔ (𝐶 = 𝑋 ∧ (𝐷 ∈ On ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵))))
166164, 165syl6bb 289 . . 3 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → (((𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ↔ (𝐶 = 𝑋 ∧ (𝐷 ∈ On ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)))))
167 3anass 1091 . . . . . 6 ((𝐷 ∈ On ∧ 𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵) ↔ (𝐷 ∈ On ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)))
168 oveq2 7166 . . . . . . . 8 (𝐶 = 𝑋 → (𝐴o 𝐶) = (𝐴o 𝑋))
169168eleq2d 2900 . . . . . . 7 (𝐶 = 𝑋 → (𝐸 ∈ (𝐴o 𝐶) ↔ 𝐸 ∈ (𝐴o 𝑋)))
170168oveq1d 7173 . . . . . . . . 9 (𝐶 = 𝑋 → ((𝐴o 𝐶) ·o 𝐷) = ((𝐴o 𝑋) ·o 𝐷))
171170oveq1d 7173 . . . . . . . 8 (𝐶 = 𝑋 → (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = (((𝐴o 𝑋) ·o 𝐷) +o 𝐸))
172171eqeq1d 2825 . . . . . . 7 (𝐶 = 𝑋 → ((((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵 ↔ (((𝐴o 𝑋) ·o 𝐷) +o 𝐸) = 𝐵))
173169, 1723anbi23d 1435 . . . . . 6 (𝐶 = 𝑋 → ((𝐷 ∈ On ∧ 𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵) ↔ (𝐷 ∈ On ∧ 𝐸 ∈ (𝐴o 𝑋) ∧ (((𝐴o 𝑋) ·o 𝐷) +o 𝐸) = 𝐵)))
174167, 173syl5bbr 287 . . . . 5 (𝐶 = 𝑋 → ((𝐷 ∈ On ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ↔ (𝐷 ∈ On ∧ 𝐸 ∈ (𝐴o 𝑋) ∧ (((𝐴o 𝑋) ·o 𝐷) +o 𝐸) = 𝐵)))
1752, 42, 89syl2anc 586 . . . . . 6 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → (𝐴o 𝑋) ∈ On)
176 oen0 8214 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝑋 ∈ On) ∧ ∅ ∈ 𝐴) → ∅ ∈ (𝐴o 𝑋))
1772, 42, 130, 176syl21anc 835 . . . . . . 7 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → ∅ ∈ (𝐴o 𝑋))
178177ne0d 4303 . . . . . 6 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → (𝐴o 𝑋) ≠ ∅)
179 omeu 8213 . . . . . . 7 (((𝐴o 𝑋) ∈ On ∧ 𝐵 ∈ On ∧ (𝐴o 𝑋) ≠ ∅) → ∃!𝑎𝑑 ∈ On ∃𝑒 ∈ (𝐴o 𝑋)(𝑎 = ⟨𝑑, 𝑒⟩ ∧ (((𝐴o 𝑋) ·o 𝑑) +o 𝑒) = 𝐵))
180 oeeu.2 . . . . . . . . 9 𝑃 = (℩𝑤𝑦 ∈ On ∃𝑧 ∈ (𝐴o 𝑋)(𝑤 = ⟨𝑦, 𝑧⟩ ∧ (((𝐴o 𝑋) ·o 𝑦) +o 𝑧) = 𝐵))
181 opeq1 4805 . . . . . . . . . . . . . 14 (𝑦 = 𝑑 → ⟨𝑦, 𝑧⟩ = ⟨𝑑, 𝑧⟩)
182181eqeq2d 2834 . . . . . . . . . . . . 13 (𝑦 = 𝑑 → (𝑤 = ⟨𝑦, 𝑧⟩ ↔ 𝑤 = ⟨𝑑, 𝑧⟩))
183 oveq2 7166 . . . . . . . . . . . . . . 15 (𝑦 = 𝑑 → ((𝐴o 𝑋) ·o 𝑦) = ((𝐴o 𝑋) ·o 𝑑))
184183oveq1d 7173 . . . . . . . . . . . . . 14 (𝑦 = 𝑑 → (((𝐴o 𝑋) ·o 𝑦) +o 𝑧) = (((𝐴o 𝑋) ·o 𝑑) +o 𝑧))
185184eqeq1d 2825 . . . . . . . . . . . . 13 (𝑦 = 𝑑 → ((((𝐴o 𝑋) ·o 𝑦) +o 𝑧) = 𝐵 ↔ (((𝐴o 𝑋) ·o 𝑑) +o 𝑧) = 𝐵))
186182, 185anbi12d 632 . . . . . . . . . . . 12 (𝑦 = 𝑑 → ((𝑤 = ⟨𝑦, 𝑧⟩ ∧ (((𝐴o 𝑋) ·o 𝑦) +o 𝑧) = 𝐵) ↔ (𝑤 = ⟨𝑑, 𝑧⟩ ∧ (((𝐴o 𝑋) ·o 𝑑) +o 𝑧) = 𝐵)))
187 opeq2 4806 . . . . . . . . . . . . . 14 (𝑧 = 𝑒 → ⟨𝑑, 𝑧⟩ = ⟨𝑑, 𝑒⟩)
188187eqeq2d 2834 . . . . . . . . . . . . 13 (𝑧 = 𝑒 → (𝑤 = ⟨𝑑, 𝑧⟩ ↔ 𝑤 = ⟨𝑑, 𝑒⟩))
189 oveq2 7166 . . . . . . . . . . . . . 14 (𝑧 = 𝑒 → (((𝐴o 𝑋) ·o 𝑑) +o 𝑧) = (((𝐴o 𝑋) ·o 𝑑) +o 𝑒))
190189eqeq1d 2825 . . . . . . . . . . . . 13 (𝑧 = 𝑒 → ((((𝐴o 𝑋) ·o 𝑑) +o 𝑧) = 𝐵 ↔ (((𝐴o 𝑋) ·o 𝑑) +o 𝑒) = 𝐵))
191188, 190anbi12d 632 . . . . . . . . . . . 12 (𝑧 = 𝑒 → ((𝑤 = ⟨𝑑, 𝑧⟩ ∧ (((𝐴o 𝑋) ·o 𝑑) +o 𝑧) = 𝐵) ↔ (𝑤 = ⟨𝑑, 𝑒⟩ ∧ (((𝐴o 𝑋) ·o 𝑑) +o 𝑒) = 𝐵)))
192186, 191cbvrex2vw 3464 . . . . . . . . . . 11 (∃𝑦 ∈ On ∃𝑧 ∈ (𝐴o 𝑋)(𝑤 = ⟨𝑦, 𝑧⟩ ∧ (((𝐴o 𝑋) ·o 𝑦) +o 𝑧) = 𝐵) ↔ ∃𝑑 ∈ On ∃𝑒 ∈ (𝐴o 𝑋)(𝑤 = ⟨𝑑, 𝑒⟩ ∧ (((𝐴o 𝑋) ·o 𝑑) +o 𝑒) = 𝐵))
193 eqeq1 2827 . . . . . . . . . . . . 13 (𝑤 = 𝑎 → (𝑤 = ⟨𝑑, 𝑒⟩ ↔ 𝑎 = ⟨𝑑, 𝑒⟩))
194193anbi1d 631 . . . . . . . . . . . 12 (𝑤 = 𝑎 → ((𝑤 = ⟨𝑑, 𝑒⟩ ∧ (((𝐴o 𝑋) ·o 𝑑) +o 𝑒) = 𝐵) ↔ (𝑎 = ⟨𝑑, 𝑒⟩ ∧ (((𝐴o 𝑋) ·o 𝑑) +o 𝑒) = 𝐵)))
1951942rexbidv 3302 . . . . . . . . . . 11 (𝑤 = 𝑎 → (∃𝑑 ∈ On ∃𝑒 ∈ (𝐴o 𝑋)(𝑤 = ⟨𝑑, 𝑒⟩ ∧ (((𝐴o 𝑋) ·o 𝑑) +o 𝑒) = 𝐵) ↔ ∃𝑑 ∈ On ∃𝑒 ∈ (𝐴o 𝑋)(𝑎 = ⟨𝑑, 𝑒⟩ ∧ (((𝐴o 𝑋) ·o 𝑑) +o 𝑒) = 𝐵)))
196192, 195syl5bb 285 . . . . . . . . . 10 (𝑤 = 𝑎 → (∃𝑦 ∈ On ∃𝑧 ∈ (𝐴o 𝑋)(𝑤 = ⟨𝑦, 𝑧⟩ ∧ (((𝐴o 𝑋) ·o 𝑦) +o 𝑧) = 𝐵) ↔ ∃𝑑 ∈ On ∃𝑒 ∈ (𝐴o 𝑋)(𝑎 = ⟨𝑑, 𝑒⟩ ∧ (((𝐴o 𝑋) ·o 𝑑) +o 𝑒) = 𝐵)))
197196cbviotavw 6324 . . . . . . . . 9 (℩𝑤𝑦 ∈ On ∃𝑧 ∈ (𝐴o 𝑋)(𝑤 = ⟨𝑦, 𝑧⟩ ∧ (((𝐴o 𝑋) ·o 𝑦) +o 𝑧) = 𝐵)) = (℩𝑎𝑑 ∈ On ∃𝑒 ∈ (𝐴o 𝑋)(𝑎 = ⟨𝑑, 𝑒⟩ ∧ (((𝐴o 𝑋) ·o 𝑑) +o 𝑒) = 𝐵))
198180, 197eqtri 2846 . . . . . . . 8 𝑃 = (℩𝑎𝑑 ∈ On ∃𝑒 ∈ (𝐴o 𝑋)(𝑎 = ⟨𝑑, 𝑒⟩ ∧ (((𝐴o 𝑋) ·o 𝑑) +o 𝑒) = 𝐵))
199 oeeu.3 . . . . . . . 8 𝑌 = (1st𝑃)
200 oeeu.4 . . . . . . . 8 𝑍 = (2nd𝑃)
201 oveq2 7166 . . . . . . . . . 10 (𝑑 = 𝐷 → ((𝐴o 𝑋) ·o 𝑑) = ((𝐴o 𝑋) ·o 𝐷))
202201oveq1d 7173 . . . . . . . . 9 (𝑑 = 𝐷 → (((𝐴o 𝑋) ·o 𝑑) +o 𝑒) = (((𝐴o 𝑋) ·o 𝐷) +o 𝑒))
203202eqeq1d 2825 . . . . . . . 8 (𝑑 = 𝐷 → ((((𝐴o 𝑋) ·o 𝑑) +o 𝑒) = 𝐵 ↔ (((𝐴o 𝑋) ·o 𝐷) +o 𝑒) = 𝐵))
204 oveq2 7166 . . . . . . . . 9 (𝑒 = 𝐸 → (((𝐴o 𝑋) ·o 𝐷) +o 𝑒) = (((𝐴o 𝑋) ·o 𝐷) +o 𝐸))
205204eqeq1d 2825 . . . . . . . 8 (𝑒 = 𝐸 → ((((𝐴o 𝑋) ·o 𝐷) +o 𝑒) = 𝐵 ↔ (((𝐴o 𝑋) ·o 𝐷) +o 𝐸) = 𝐵))
206198, 199, 200, 203, 205opiota 7759 . . . . . . 7 (∃!𝑎𝑑 ∈ On ∃𝑒 ∈ (𝐴o 𝑋)(𝑎 = ⟨𝑑, 𝑒⟩ ∧ (((𝐴o 𝑋) ·o 𝑑) +o 𝑒) = 𝐵) → ((𝐷 ∈ On ∧ 𝐸 ∈ (𝐴o 𝑋) ∧ (((𝐴o 𝑋) ·o 𝐷) +o 𝐸) = 𝐵) ↔ (𝐷 = 𝑌𝐸 = 𝑍)))
207179, 206syl 17 . . . . . 6 (((𝐴o 𝑋) ∈ On ∧ 𝐵 ∈ On ∧ (𝐴o 𝑋) ≠ ∅) → ((𝐷 ∈ On ∧ 𝐸 ∈ (𝐴o 𝑋) ∧ (((𝐴o 𝑋) ·o 𝐷) +o 𝐸) = 𝐵) ↔ (𝐷 = 𝑌𝐸 = 𝑍)))
208175, 140, 178, 207syl3anc 1367 . . . . 5 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → ((𝐷 ∈ On ∧ 𝐸 ∈ (𝐴o 𝑋) ∧ (((𝐴o 𝑋) ·o 𝐷) +o 𝐸) = 𝐵) ↔ (𝐷 = 𝑌𝐸 = 𝑍)))
209174, 208sylan9bbr 513 . . . 4 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ 𝐶 = 𝑋) → ((𝐷 ∈ On ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ↔ (𝐷 = 𝑌𝐸 = 𝑍)))
210209pm5.32da 581 . . 3 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → ((𝐶 = 𝑋 ∧ (𝐷 ∈ On ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵))) ↔ (𝐶 = 𝑋 ∧ (𝐷 = 𝑌𝐸 = 𝑍))))
211166, 210bitrd 281 . 2 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → (((𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ↔ (𝐶 = 𝑋 ∧ (𝐷 = 𝑌𝐸 = 𝑍))))
212 3an4anass 1101 . 2 (((𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o) ∧ 𝐸 ∈ (𝐴o 𝐶)) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵) ↔ ((𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)))
213 3anass 1091 . 2 ((𝐶 = 𝑋𝐷 = 𝑌𝐸 = 𝑍) ↔ (𝐶 = 𝑋 ∧ (𝐷 = 𝑌𝐸 = 𝑍)))
214211, 212, 2133bitr4g 316 1 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → (((𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o) ∧ 𝐸 ∈ (𝐴o 𝐶)) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵) ↔ (𝐶 = 𝑋𝐷 = 𝑌𝐸 = 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  ∃!weu 2653  wne 3018  wrex 3141  {crab 3144  cdif 3935  wss 3938  c0 4293  {csn 4569  cop 4575   cuni 4840   cint 4878  Ord word 6192  Oncon0 6193  suc csuc 6195  cio 6314  cfv 6357  (class class class)co 7158  1st c1st 7689  2nd c2nd 7690  1oc1o 8097  2oc2o 8098   +o coa 8101   ·o comu 8102  o coe 8103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-omul 8109  df-oexp 8110
This theorem is referenced by:  oeeu  8231  cantnflem3  9156  cantnflem4  9157
  Copyright terms: Public domain W3C validator