MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oemapvali Structured version   Visualization version   GIF version

Theorem oemapvali 9149
Description: If 𝐹 < 𝐺, then there is some 𝑧 witnessing this, but we can say more and in fact there is a definable expression 𝑋 that also witnesses 𝐹 < 𝐺. (Contributed by Mario Carneiro, 25-May-2015.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
oemapval.t 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
oemapval.f (𝜑𝐹𝑆)
oemapval.g (𝜑𝐺𝑆)
oemapvali.r (𝜑𝐹𝑇𝐺)
oemapvali.x 𝑋 = {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)}
Assertion
Ref Expression
oemapvali (𝜑 → (𝑋𝐵 ∧ (𝐹𝑋) ∈ (𝐺𝑋) ∧ ∀𝑤𝐵 (𝑋𝑤 → (𝐹𝑤) = (𝐺𝑤))))
Distinct variable groups:   𝑤,𝑐,𝑥,𝑦,𝑧,𝐵   𝐴,𝑐,𝑤,𝑥,𝑦,𝑧   𝑇,𝑐   𝑤,𝐹,𝑥,𝑦,𝑧   𝑆,𝑐,𝑥,𝑦,𝑧   𝐺,𝑐,𝑤,𝑥,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑤,𝑋,𝑥,𝑦,𝑧   𝐹,𝑐   𝜑,𝑐
Allowed substitution hints:   𝜑(𝑤)   𝑆(𝑤)   𝑇(𝑥,𝑦,𝑧,𝑤)   𝑋(𝑐)

Proof of Theorem oemapvali
StepHypRef Expression
1 oemapvali.r . . 3 (𝜑𝐹𝑇𝐺)
2 cantnfs.s . . . 4 𝑆 = dom (𝐴 CNF 𝐵)
3 cantnfs.a . . . 4 (𝜑𝐴 ∈ On)
4 cantnfs.b . . . 4 (𝜑𝐵 ∈ On)
5 oemapval.t . . . 4 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
6 oemapval.f . . . 4 (𝜑𝐹𝑆)
7 oemapval.g . . . 4 (𝜑𝐺𝑆)
82, 3, 4, 5, 6, 7oemapval 9148 . . 3 (𝜑 → (𝐹𝑇𝐺 ↔ ∃𝑧𝐵 ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤)))))
91, 8mpbid 234 . 2 (𝜑 → ∃𝑧𝐵 ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))
10 ssrab2 4058 . . . 4 {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ⊆ 𝐵
11 oemapvali.x . . . . 5 𝑋 = {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)}
124adantr 483 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → 𝐵 ∈ On)
13 onss 7507 . . . . . . . 8 (𝐵 ∈ On → 𝐵 ⊆ On)
1412, 13syl 17 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → 𝐵 ⊆ On)
1510, 14sstrid 3980 . . . . . 6 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ⊆ On)
162, 3, 4cantnfs 9131 . . . . . . . . . 10 (𝜑 → (𝐺𝑆 ↔ (𝐺:𝐵𝐴𝐺 finSupp ∅)))
177, 16mpbid 234 . . . . . . . . 9 (𝜑 → (𝐺:𝐵𝐴𝐺 finSupp ∅))
1817simprd 498 . . . . . . . 8 (𝜑𝐺 finSupp ∅)
1918adantr 483 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → 𝐺 finSupp ∅)
2043ad2ant1 1129 . . . . . . . . . 10 ((𝜑𝑐𝐵 ∧ (𝐹𝑐) ∈ (𝐺𝑐)) → 𝐵 ∈ On)
21 simp2 1133 . . . . . . . . . 10 ((𝜑𝑐𝐵 ∧ (𝐹𝑐) ∈ (𝐺𝑐)) → 𝑐𝐵)
2217simpld 497 . . . . . . . . . . . 12 (𝜑𝐺:𝐵𝐴)
2322ffnd 6517 . . . . . . . . . . 11 (𝜑𝐺 Fn 𝐵)
24233ad2ant1 1129 . . . . . . . . . 10 ((𝜑𝑐𝐵 ∧ (𝐹𝑐) ∈ (𝐺𝑐)) → 𝐺 Fn 𝐵)
25 ne0i 4302 . . . . . . . . . . 11 ((𝐹𝑐) ∈ (𝐺𝑐) → (𝐺𝑐) ≠ ∅)
26253ad2ant3 1131 . . . . . . . . . 10 ((𝜑𝑐𝐵 ∧ (𝐹𝑐) ∈ (𝐺𝑐)) → (𝐺𝑐) ≠ ∅)
27 fvn0elsupp 7848 . . . . . . . . . 10 (((𝐵 ∈ On ∧ 𝑐𝐵) ∧ (𝐺 Fn 𝐵 ∧ (𝐺𝑐) ≠ ∅)) → 𝑐 ∈ (𝐺 supp ∅))
2820, 21, 24, 26, 27syl22anc 836 . . . . . . . . 9 ((𝜑𝑐𝐵 ∧ (𝐹𝑐) ∈ (𝐺𝑐)) → 𝑐 ∈ (𝐺 supp ∅))
2928rabssdv 4053 . . . . . . . 8 (𝜑 → {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ⊆ (𝐺 supp ∅))
3029adantr 483 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ⊆ (𝐺 supp ∅))
31 fsuppimp 8841 . . . . . . . 8 (𝐺 finSupp ∅ → (Fun 𝐺 ∧ (𝐺 supp ∅) ∈ Fin))
32 ssfi 8740 . . . . . . . . 9 (((𝐺 supp ∅) ∈ Fin ∧ {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ⊆ (𝐺 supp ∅)) → {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ∈ Fin)
3332ex 415 . . . . . . . 8 ((𝐺 supp ∅) ∈ Fin → ({𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ⊆ (𝐺 supp ∅) → {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ∈ Fin))
3431, 33simpl2im 506 . . . . . . 7 (𝐺 finSupp ∅ → ({𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ⊆ (𝐺 supp ∅) → {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ∈ Fin))
3519, 30, 34sylc 65 . . . . . 6 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ∈ Fin)
36 fveq2 6672 . . . . . . . . 9 (𝑐 = 𝑧 → (𝐹𝑐) = (𝐹𝑧))
37 fveq2 6672 . . . . . . . . 9 (𝑐 = 𝑧 → (𝐺𝑐) = (𝐺𝑧))
3836, 37eleq12d 2909 . . . . . . . 8 (𝑐 = 𝑧 → ((𝐹𝑐) ∈ (𝐺𝑐) ↔ (𝐹𝑧) ∈ (𝐺𝑧)))
39 simprl 769 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → 𝑧𝐵)
40 simprrl 779 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → (𝐹𝑧) ∈ (𝐺𝑧))
4138, 39, 40elrabd 3684 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → 𝑧 ∈ {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)})
4241ne0d 4303 . . . . . 6 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ≠ ∅)
43 ordunifi 8770 . . . . . 6 (({𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ⊆ On ∧ {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ∈ Fin ∧ {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ≠ ∅) → {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ∈ {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)})
4415, 35, 42, 43syl3anc 1367 . . . . 5 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ∈ {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)})
4511, 44eqeltrid 2919 . . . 4 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → 𝑋 ∈ {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)})
4610, 45sseldi 3967 . . 3 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → 𝑋𝐵)
47 fveq2 6672 . . . . . . 7 (𝑥 = 𝑋 → (𝐹𝑥) = (𝐹𝑋))
48 fveq2 6672 . . . . . . 7 (𝑥 = 𝑋 → (𝐺𝑥) = (𝐺𝑋))
4947, 48eleq12d 2909 . . . . . 6 (𝑥 = 𝑋 → ((𝐹𝑥) ∈ (𝐺𝑥) ↔ (𝐹𝑋) ∈ (𝐺𝑋)))
50 fveq2 6672 . . . . . . . 8 (𝑐 = 𝑥 → (𝐹𝑐) = (𝐹𝑥))
51 fveq2 6672 . . . . . . . 8 (𝑐 = 𝑥 → (𝐺𝑐) = (𝐺𝑥))
5250, 51eleq12d 2909 . . . . . . 7 (𝑐 = 𝑥 → ((𝐹𝑐) ∈ (𝐺𝑐) ↔ (𝐹𝑥) ∈ (𝐺𝑥)))
5352cbvrabv 3493 . . . . . 6 {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} = {𝑥𝐵 ∣ (𝐹𝑥) ∈ (𝐺𝑥)}
5449, 53elrab2 3685 . . . . 5 (𝑋 ∈ {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ↔ (𝑋𝐵 ∧ (𝐹𝑋) ∈ (𝐺𝑋)))
5545, 54sylib 220 . . . 4 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → (𝑋𝐵 ∧ (𝐹𝑋) ∈ (𝐺𝑋)))
5655simprd 498 . . 3 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → (𝐹𝑋) ∈ (𝐺𝑋))
57 simprrr 780 . . . 4 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤)))
583adantr 483 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → 𝐴 ∈ On)
5922adantr 483 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → 𝐺:𝐵𝐴)
6059, 46ffvelrnd 6854 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → (𝐺𝑋) ∈ 𝐴)
61 onelon 6218 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ (𝐺𝑋) ∈ 𝐴) → (𝐺𝑋) ∈ On)
6258, 60, 61syl2anc 586 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → (𝐺𝑋) ∈ On)
63 eloni 6203 . . . . . . . . . 10 ((𝐺𝑋) ∈ On → Ord (𝐺𝑋))
64 ordirr 6211 . . . . . . . . . 10 (Ord (𝐺𝑋) → ¬ (𝐺𝑋) ∈ (𝐺𝑋))
6562, 63, 643syl 18 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → ¬ (𝐺𝑋) ∈ (𝐺𝑋))
66 nelneq 2939 . . . . . . . . 9 (((𝐹𝑋) ∈ (𝐺𝑋) ∧ ¬ (𝐺𝑋) ∈ (𝐺𝑋)) → ¬ (𝐹𝑋) = (𝐺𝑋))
6756, 65, 66syl2anc 586 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → ¬ (𝐹𝑋) = (𝐺𝑋))
68 eleq2 2903 . . . . . . . . . 10 (𝑤 = 𝑋 → (𝑧𝑤𝑧𝑋))
69 fveq2 6672 . . . . . . . . . . 11 (𝑤 = 𝑋 → (𝐹𝑤) = (𝐹𝑋))
70 fveq2 6672 . . . . . . . . . . 11 (𝑤 = 𝑋 → (𝐺𝑤) = (𝐺𝑋))
7169, 70eqeq12d 2839 . . . . . . . . . 10 (𝑤 = 𝑋 → ((𝐹𝑤) = (𝐺𝑤) ↔ (𝐹𝑋) = (𝐺𝑋)))
7268, 71imbi12d 347 . . . . . . . . 9 (𝑤 = 𝑋 → ((𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤)) ↔ (𝑧𝑋 → (𝐹𝑋) = (𝐺𝑋))))
7372, 57, 46rspcdva 3627 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → (𝑧𝑋 → (𝐹𝑋) = (𝐺𝑋)))
7467, 73mtod 200 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → ¬ 𝑧𝑋)
75 ssexg 5229 . . . . . . . . . . 11 (({𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ⊆ 𝐵𝐵 ∈ On) → {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ∈ V)
7610, 12, 75sylancr 589 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ∈ V)
77 ssonuni 7503 . . . . . . . . . 10 ({𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ∈ V → ({𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ⊆ On → {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ∈ On))
7876, 15, 77sylc 65 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ∈ On)
7911, 78eqeltrid 2919 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → 𝑋 ∈ On)
80 onelon 6218 . . . . . . . . 9 ((𝐵 ∈ On ∧ 𝑧𝐵) → 𝑧 ∈ On)
8112, 39, 80syl2anc 586 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → 𝑧 ∈ On)
82 ontri1 6227 . . . . . . . 8 ((𝑋 ∈ On ∧ 𝑧 ∈ On) → (𝑋𝑧 ↔ ¬ 𝑧𝑋))
8379, 81, 82syl2anc 586 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → (𝑋𝑧 ↔ ¬ 𝑧𝑋))
8474, 83mpbird 259 . . . . . 6 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → 𝑋𝑧)
85 elssuni 4870 . . . . . . . 8 (𝑧 ∈ {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} → 𝑧 {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)})
8685, 11sseqtrrdi 4020 . . . . . . 7 (𝑧 ∈ {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} → 𝑧𝑋)
8741, 86syl 17 . . . . . 6 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → 𝑧𝑋)
8884, 87eqssd 3986 . . . . 5 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → 𝑋 = 𝑧)
89 eleq1 2902 . . . . . . 7 (𝑋 = 𝑧 → (𝑋𝑤𝑧𝑤))
9089imbi1d 344 . . . . . 6 (𝑋 = 𝑧 → ((𝑋𝑤 → (𝐹𝑤) = (𝐺𝑤)) ↔ (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))
9190ralbidv 3199 . . . . 5 (𝑋 = 𝑧 → (∀𝑤𝐵 (𝑋𝑤 → (𝐹𝑤) = (𝐺𝑤)) ↔ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))
9288, 91syl 17 . . . 4 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → (∀𝑤𝐵 (𝑋𝑤 → (𝐹𝑤) = (𝐺𝑤)) ↔ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))
9357, 92mpbird 259 . . 3 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → ∀𝑤𝐵 (𝑋𝑤 → (𝐹𝑤) = (𝐺𝑤)))
9446, 56, 933jca 1124 . 2 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → (𝑋𝐵 ∧ (𝐹𝑋) ∈ (𝐺𝑋) ∧ ∀𝑤𝐵 (𝑋𝑤 → (𝐹𝑤) = (𝐺𝑤))))
959, 94rexlimddv 3293 1 (𝜑 → (𝑋𝐵 ∧ (𝐹𝑋) ∈ (𝐺𝑋) ∧ ∀𝑤𝐵 (𝑋𝑤 → (𝐹𝑤) = (𝐺𝑤))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3018  wral 3140  wrex 3141  {crab 3144  Vcvv 3496  wss 3938  c0 4293   cuni 4840   class class class wbr 5068  {copab 5130  dom cdm 5557  Ord word 6192  Oncon0 6193  Fun wfun 6351   Fn wfn 6352  wf 6353  cfv 6357  (class class class)co 7158   supp csupp 7832  Fincfn 8511   finSupp cfsupp 8835   CNF ccnf 9126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-seqom 8086  df-1o 8104  df-er 8291  df-map 8410  df-en 8512  df-fin 8515  df-fsupp 8836  df-cnf 9127
This theorem is referenced by:  cantnflem1a  9150  cantnflem1b  9151  cantnflem1c  9152  cantnflem1d  9153  cantnflem1  9154
  Copyright terms: Public domain W3C validator