MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oeoe Structured version   Visualization version   GIF version

Theorem oeoe 8224
Description: Product of exponents law for ordinal exponentiation. Theorem 8S of [Enderton] p. 238. Also Proposition 8.42 of [TakeutiZaring] p. 70. (Contributed by Eric Schmidt, 26-May-2009.)
Assertion
Ref Expression
oeoe ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴o 𝐵) ↑o 𝐶) = (𝐴o (𝐵 ·o 𝐶)))

Proof of Theorem oeoe
StepHypRef Expression
1 oveq2 7163 . . . . . . . . . . . 12 (𝐵 = ∅ → (∅ ↑o 𝐵) = (∅ ↑o ∅))
2 oe0m0 8144 . . . . . . . . . . . 12 (∅ ↑o ∅) = 1o
31, 2syl6eq 2872 . . . . . . . . . . 11 (𝐵 = ∅ → (∅ ↑o 𝐵) = 1o)
43oveq1d 7170 . . . . . . . . . 10 (𝐵 = ∅ → ((∅ ↑o 𝐵) ↑o 𝐶) = (1oo 𝐶))
5 oe1m 8170 . . . . . . . . . 10 (𝐶 ∈ On → (1oo 𝐶) = 1o)
64, 5sylan9eqr 2878 . . . . . . . . 9 ((𝐶 ∈ On ∧ 𝐵 = ∅) → ((∅ ↑o 𝐵) ↑o 𝐶) = 1o)
76adantll 712 . . . . . . . 8 (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐵 = ∅) → ((∅ ↑o 𝐵) ↑o 𝐶) = 1o)
8 oveq2 7163 . . . . . . . . . 10 (𝐶 = ∅ → ((∅ ↑o 𝐵) ↑o 𝐶) = ((∅ ↑o 𝐵) ↑o ∅))
9 0elon 6243 . . . . . . . . . . . 12 ∅ ∈ On
10 oecl 8161 . . . . . . . . . . . 12 ((∅ ∈ On ∧ 𝐵 ∈ On) → (∅ ↑o 𝐵) ∈ On)
119, 10mpan 688 . . . . . . . . . . 11 (𝐵 ∈ On → (∅ ↑o 𝐵) ∈ On)
12 oe0 8146 . . . . . . . . . . 11 ((∅ ↑o 𝐵) ∈ On → ((∅ ↑o 𝐵) ↑o ∅) = 1o)
1311, 12syl 17 . . . . . . . . . 10 (𝐵 ∈ On → ((∅ ↑o 𝐵) ↑o ∅) = 1o)
148, 13sylan9eqr 2878 . . . . . . . . 9 ((𝐵 ∈ On ∧ 𝐶 = ∅) → ((∅ ↑o 𝐵) ↑o 𝐶) = 1o)
1514adantlr 713 . . . . . . . 8 (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐶 = ∅) → ((∅ ↑o 𝐵) ↑o 𝐶) = 1o)
167, 15jaodan 954 . . . . . . 7 (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ (𝐵 = ∅ ∨ 𝐶 = ∅)) → ((∅ ↑o 𝐵) ↑o 𝐶) = 1o)
17 om00 8200 . . . . . . . . . 10 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐵 ·o 𝐶) = ∅ ↔ (𝐵 = ∅ ∨ 𝐶 = ∅)))
1817biimpar 480 . . . . . . . . 9 (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ (𝐵 = ∅ ∨ 𝐶 = ∅)) → (𝐵 ·o 𝐶) = ∅)
1918oveq2d 7171 . . . . . . . 8 (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ (𝐵 = ∅ ∨ 𝐶 = ∅)) → (∅ ↑o (𝐵 ·o 𝐶)) = (∅ ↑o ∅))
2019, 2syl6eq 2872 . . . . . . 7 (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ (𝐵 = ∅ ∨ 𝐶 = ∅)) → (∅ ↑o (𝐵 ·o 𝐶)) = 1o)
2116, 20eqtr4d 2859 . . . . . 6 (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ (𝐵 = ∅ ∨ 𝐶 = ∅)) → ((∅ ↑o 𝐵) ↑o 𝐶) = (∅ ↑o (𝐵 ·o 𝐶)))
22 on0eln0 6245 . . . . . . . . . 10 (𝐵 ∈ On → (∅ ∈ 𝐵𝐵 ≠ ∅))
23 on0eln0 6245 . . . . . . . . . 10 (𝐶 ∈ On → (∅ ∈ 𝐶𝐶 ≠ ∅))
2422, 23bi2anan9 637 . . . . . . . . 9 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → ((∅ ∈ 𝐵 ∧ ∅ ∈ 𝐶) ↔ (𝐵 ≠ ∅ ∧ 𝐶 ≠ ∅)))
25 neanior 3109 . . . . . . . . 9 ((𝐵 ≠ ∅ ∧ 𝐶 ≠ ∅) ↔ ¬ (𝐵 = ∅ ∨ 𝐶 = ∅))
2624, 25syl6bb 289 . . . . . . . 8 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → ((∅ ∈ 𝐵 ∧ ∅ ∈ 𝐶) ↔ ¬ (𝐵 = ∅ ∨ 𝐶 = ∅)))
27 oe0m1 8145 . . . . . . . . . . . . . 14 (𝐵 ∈ On → (∅ ∈ 𝐵 ↔ (∅ ↑o 𝐵) = ∅))
2827biimpa 479 . . . . . . . . . . . . 13 ((𝐵 ∈ On ∧ ∅ ∈ 𝐵) → (∅ ↑o 𝐵) = ∅)
2928oveq1d 7170 . . . . . . . . . . . 12 ((𝐵 ∈ On ∧ ∅ ∈ 𝐵) → ((∅ ↑o 𝐵) ↑o 𝐶) = (∅ ↑o 𝐶))
30 oe0m1 8145 . . . . . . . . . . . . 13 (𝐶 ∈ On → (∅ ∈ 𝐶 ↔ (∅ ↑o 𝐶) = ∅))
3130biimpa 479 . . . . . . . . . . . 12 ((𝐶 ∈ On ∧ ∅ ∈ 𝐶) → (∅ ↑o 𝐶) = ∅)
3229, 31sylan9eq 2876 . . . . . . . . . . 11 (((𝐵 ∈ On ∧ ∅ ∈ 𝐵) ∧ (𝐶 ∈ On ∧ ∅ ∈ 𝐶)) → ((∅ ↑o 𝐵) ↑o 𝐶) = ∅)
3332an4s 658 . . . . . . . . . 10 (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ (∅ ∈ 𝐵 ∧ ∅ ∈ 𝐶)) → ((∅ ↑o 𝐵) ↑o 𝐶) = ∅)
34 om00el 8201 . . . . . . . . . . . 12 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (∅ ∈ (𝐵 ·o 𝐶) ↔ (∅ ∈ 𝐵 ∧ ∅ ∈ 𝐶)))
35 omcl 8160 . . . . . . . . . . . . 13 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 ·o 𝐶) ∈ On)
36 oe0m1 8145 . . . . . . . . . . . . 13 ((𝐵 ·o 𝐶) ∈ On → (∅ ∈ (𝐵 ·o 𝐶) ↔ (∅ ↑o (𝐵 ·o 𝐶)) = ∅))
3735, 36syl 17 . . . . . . . . . . . 12 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (∅ ∈ (𝐵 ·o 𝐶) ↔ (∅ ↑o (𝐵 ·o 𝐶)) = ∅))
3834, 37bitr3d 283 . . . . . . . . . . 11 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → ((∅ ∈ 𝐵 ∧ ∅ ∈ 𝐶) ↔ (∅ ↑o (𝐵 ·o 𝐶)) = ∅))
3938biimpa 479 . . . . . . . . . 10 (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ (∅ ∈ 𝐵 ∧ ∅ ∈ 𝐶)) → (∅ ↑o (𝐵 ·o 𝐶)) = ∅)
4033, 39eqtr4d 2859 . . . . . . . . 9 (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ (∅ ∈ 𝐵 ∧ ∅ ∈ 𝐶)) → ((∅ ↑o 𝐵) ↑o 𝐶) = (∅ ↑o (𝐵 ·o 𝐶)))
4140ex 415 . . . . . . . 8 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → ((∅ ∈ 𝐵 ∧ ∅ ∈ 𝐶) → ((∅ ↑o 𝐵) ↑o 𝐶) = (∅ ↑o (𝐵 ·o 𝐶))))
4226, 41sylbird 262 . . . . . . 7 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (¬ (𝐵 = ∅ ∨ 𝐶 = ∅) → ((∅ ↑o 𝐵) ↑o 𝐶) = (∅ ↑o (𝐵 ·o 𝐶))))
4342imp 409 . . . . . 6 (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ¬ (𝐵 = ∅ ∨ 𝐶 = ∅)) → ((∅ ↑o 𝐵) ↑o 𝐶) = (∅ ↑o (𝐵 ·o 𝐶)))
4421, 43pm2.61dan 811 . . . . 5 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → ((∅ ↑o 𝐵) ↑o 𝐶) = (∅ ↑o (𝐵 ·o 𝐶)))
45 oveq1 7162 . . . . . . 7 (𝐴 = ∅ → (𝐴o 𝐵) = (∅ ↑o 𝐵))
4645oveq1d 7170 . . . . . 6 (𝐴 = ∅ → ((𝐴o 𝐵) ↑o 𝐶) = ((∅ ↑o 𝐵) ↑o 𝐶))
47 oveq1 7162 . . . . . 6 (𝐴 = ∅ → (𝐴o (𝐵 ·o 𝐶)) = (∅ ↑o (𝐵 ·o 𝐶)))
4846, 47eqeq12d 2837 . . . . 5 (𝐴 = ∅ → (((𝐴o 𝐵) ↑o 𝐶) = (𝐴o (𝐵 ·o 𝐶)) ↔ ((∅ ↑o 𝐵) ↑o 𝐶) = (∅ ↑o (𝐵 ·o 𝐶))))
4944, 48syl5ibr 248 . . . 4 (𝐴 = ∅ → ((𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴o 𝐵) ↑o 𝐶) = (𝐴o (𝐵 ·o 𝐶))))
5049impcom 410 . . 3 (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴 = ∅) → ((𝐴o 𝐵) ↑o 𝐶) = (𝐴o (𝐵 ·o 𝐶)))
51 oveq1 7162 . . . . . . . . 9 (𝐴 = if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) → (𝐴o 𝐵) = (if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ↑o 𝐵))
5251oveq1d 7170 . . . . . . . 8 (𝐴 = if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) → ((𝐴o 𝐵) ↑o 𝐶) = ((if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ↑o 𝐵) ↑o 𝐶))
53 oveq1 7162 . . . . . . . 8 (𝐴 = if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) → (𝐴o (𝐵 ·o 𝐶)) = (if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ↑o (𝐵 ·o 𝐶)))
5452, 53eqeq12d 2837 . . . . . . 7 (𝐴 = if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) → (((𝐴o 𝐵) ↑o 𝐶) = (𝐴o (𝐵 ·o 𝐶)) ↔ ((if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ↑o 𝐵) ↑o 𝐶) = (if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ↑o (𝐵 ·o 𝐶))))
5554imbi2d 343 . . . . . 6 (𝐴 = if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) → (((𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴o 𝐵) ↑o 𝐶) = (𝐴o (𝐵 ·o 𝐶))) ↔ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → ((if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ↑o 𝐵) ↑o 𝐶) = (if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ↑o (𝐵 ·o 𝐶)))))
56 eleq1 2900 . . . . . . . . . 10 (𝐴 = if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) → (𝐴 ∈ On ↔ if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ∈ On))
57 eleq2 2901 . . . . . . . . . 10 (𝐴 = if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) → (∅ ∈ 𝐴 ↔ ∅ ∈ if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o)))
5856, 57anbi12d 632 . . . . . . . . 9 (𝐴 = if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) → ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) ↔ (if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ∈ On ∧ ∅ ∈ if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o))))
59 eleq1 2900 . . . . . . . . . 10 (1o = if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) → (1o ∈ On ↔ if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ∈ On))
60 eleq2 2901 . . . . . . . . . 10 (1o = if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) → (∅ ∈ 1o ↔ ∅ ∈ if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o)))
6159, 60anbi12d 632 . . . . . . . . 9 (1o = if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) → ((1o ∈ On ∧ ∅ ∈ 1o) ↔ (if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ∈ On ∧ ∅ ∈ if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o))))
62 1on 8108 . . . . . . . . . 10 1o ∈ On
63 0lt1o 8128 . . . . . . . . . 10 ∅ ∈ 1o
6462, 63pm3.2i 473 . . . . . . . . 9 (1o ∈ On ∧ ∅ ∈ 1o)
6558, 61, 64elimhyp 4529 . . . . . . . 8 (if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ∈ On ∧ ∅ ∈ if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o))
6665simpli 486 . . . . . . 7 if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ∈ On
6765simpri 488 . . . . . . 7 ∅ ∈ if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o)
6866, 67oeoelem 8223 . . . . . 6 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → ((if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ↑o 𝐵) ↑o 𝐶) = (if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ↑o (𝐵 ·o 𝐶)))
6955, 68dedth 4522 . . . . 5 ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → ((𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴o 𝐵) ↑o 𝐶) = (𝐴o (𝐵 ·o 𝐶))))
7069imp 409 . . . 4 (((𝐴 ∈ On ∧ ∅ ∈ 𝐴) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ On)) → ((𝐴o 𝐵) ↑o 𝐶) = (𝐴o (𝐵 ·o 𝐶)))
7170an32s 650 . . 3 (((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝐶 ∈ On)) ∧ ∅ ∈ 𝐴) → ((𝐴o 𝐵) ↑o 𝐶) = (𝐴o (𝐵 ·o 𝐶)))
7250, 71oe0lem 8137 . 2 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝐶 ∈ On)) → ((𝐴o 𝐵) ↑o 𝐶) = (𝐴o (𝐵 ·o 𝐶)))
73723impb 1111 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴o 𝐵) ↑o 𝐶) = (𝐴o (𝐵 ·o 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1533  wcel 2110  wne 3016  c0 4290  ifcif 4466  Oncon0 6190  (class class class)co 7155  1oc1o 8094   ·o comu 8099  o coe 8100
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-2o 8102  df-oadd 8105  df-omul 8106  df-oexp 8107
This theorem is referenced by:  infxpenc  9443
  Copyright terms: Public domain W3C validator