MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oeworde Structured version   Visualization version   GIF version

Theorem oeworde 7618
Description: Ordinal exponentiation compared to its exponent. Proposition 8.37 of [TakeutiZaring] p. 68. (Contributed by NM, 7-Jan-2005.) (Revised by Mario Carneiro, 24-May-2015.)
Assertion
Ref Expression
oeworde ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ On) → 𝐵 ⊆ (𝐴𝑜 𝐵))

Proof of Theorem oeworde
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . . 4 (𝑥 = ∅ → 𝑥 = ∅)
2 oveq2 6612 . . . 4 (𝑥 = ∅ → (𝐴𝑜 𝑥) = (𝐴𝑜 ∅))
31, 2sseq12d 3613 . . 3 (𝑥 = ∅ → (𝑥 ⊆ (𝐴𝑜 𝑥) ↔ ∅ ⊆ (𝐴𝑜 ∅)))
4 id 22 . . . 4 (𝑥 = 𝑦𝑥 = 𝑦)
5 oveq2 6612 . . . 4 (𝑥 = 𝑦 → (𝐴𝑜 𝑥) = (𝐴𝑜 𝑦))
64, 5sseq12d 3613 . . 3 (𝑥 = 𝑦 → (𝑥 ⊆ (𝐴𝑜 𝑥) ↔ 𝑦 ⊆ (𝐴𝑜 𝑦)))
7 id 22 . . . 4 (𝑥 = suc 𝑦𝑥 = suc 𝑦)
8 oveq2 6612 . . . 4 (𝑥 = suc 𝑦 → (𝐴𝑜 𝑥) = (𝐴𝑜 suc 𝑦))
97, 8sseq12d 3613 . . 3 (𝑥 = suc 𝑦 → (𝑥 ⊆ (𝐴𝑜 𝑥) ↔ suc 𝑦 ⊆ (𝐴𝑜 suc 𝑦)))
10 id 22 . . . 4 (𝑥 = 𝐵𝑥 = 𝐵)
11 oveq2 6612 . . . 4 (𝑥 = 𝐵 → (𝐴𝑜 𝑥) = (𝐴𝑜 𝐵))
1210, 11sseq12d 3613 . . 3 (𝑥 = 𝐵 → (𝑥 ⊆ (𝐴𝑜 𝑥) ↔ 𝐵 ⊆ (𝐴𝑜 𝐵)))
13 0ss 3944 . . . 4 ∅ ⊆ (𝐴𝑜 ∅)
1413a1i 11 . . 3 (𝐴 ∈ (On ∖ 2𝑜) → ∅ ⊆ (𝐴𝑜 ∅))
15 eloni 5692 . . . . . . 7 (𝑦 ∈ On → Ord 𝑦)
1615adantl 482 . . . . . 6 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝑦 ∈ On) → Ord 𝑦)
17 eldifi 3710 . . . . . . . 8 (𝐴 ∈ (On ∖ 2𝑜) → 𝐴 ∈ On)
18 oecl 7562 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴𝑜 𝑦) ∈ On)
1917, 18sylan 488 . . . . . . 7 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝑦 ∈ On) → (𝐴𝑜 𝑦) ∈ On)
20 eloni 5692 . . . . . . 7 ((𝐴𝑜 𝑦) ∈ On → Ord (𝐴𝑜 𝑦))
2119, 20syl 17 . . . . . 6 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝑦 ∈ On) → Ord (𝐴𝑜 𝑦))
22 ordsucsssuc 6970 . . . . . 6 ((Ord 𝑦 ∧ Ord (𝐴𝑜 𝑦)) → (𝑦 ⊆ (𝐴𝑜 𝑦) ↔ suc 𝑦 ⊆ suc (𝐴𝑜 𝑦)))
2316, 21, 22syl2anc 692 . . . . 5 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝑦 ∈ On) → (𝑦 ⊆ (𝐴𝑜 𝑦) ↔ suc 𝑦 ⊆ suc (𝐴𝑜 𝑦)))
24 suceloni 6960 . . . . . . . . 9 (𝑦 ∈ On → suc 𝑦 ∈ On)
25 oecl 7562 . . . . . . . . 9 ((𝐴 ∈ On ∧ suc 𝑦 ∈ On) → (𝐴𝑜 suc 𝑦) ∈ On)
2617, 24, 25syl2an 494 . . . . . . . 8 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝑦 ∈ On) → (𝐴𝑜 suc 𝑦) ∈ On)
27 eloni 5692 . . . . . . . 8 ((𝐴𝑜 suc 𝑦) ∈ On → Ord (𝐴𝑜 suc 𝑦))
2826, 27syl 17 . . . . . . 7 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝑦 ∈ On) → Ord (𝐴𝑜 suc 𝑦))
29 id 22 . . . . . . . 8 (𝐴 ∈ (On ∖ 2𝑜) → 𝐴 ∈ (On ∖ 2𝑜))
30 vex 3189 . . . . . . . . . 10 𝑦 ∈ V
3130sucid 5763 . . . . . . . . 9 𝑦 ∈ suc 𝑦
32 oeordi 7612 . . . . . . . . 9 ((suc 𝑦 ∈ On ∧ 𝐴 ∈ (On ∖ 2𝑜)) → (𝑦 ∈ suc 𝑦 → (𝐴𝑜 𝑦) ∈ (𝐴𝑜 suc 𝑦)))
3331, 32mpi 20 . . . . . . . 8 ((suc 𝑦 ∈ On ∧ 𝐴 ∈ (On ∖ 2𝑜)) → (𝐴𝑜 𝑦) ∈ (𝐴𝑜 suc 𝑦))
3424, 29, 33syl2anr 495 . . . . . . 7 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝑦 ∈ On) → (𝐴𝑜 𝑦) ∈ (𝐴𝑜 suc 𝑦))
35 ordsucss 6965 . . . . . . 7 (Ord (𝐴𝑜 suc 𝑦) → ((𝐴𝑜 𝑦) ∈ (𝐴𝑜 suc 𝑦) → suc (𝐴𝑜 𝑦) ⊆ (𝐴𝑜 suc 𝑦)))
3628, 34, 35sylc 65 . . . . . 6 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝑦 ∈ On) → suc (𝐴𝑜 𝑦) ⊆ (𝐴𝑜 suc 𝑦))
37 sstr2 3590 . . . . . 6 (suc 𝑦 ⊆ suc (𝐴𝑜 𝑦) → (suc (𝐴𝑜 𝑦) ⊆ (𝐴𝑜 suc 𝑦) → suc 𝑦 ⊆ (𝐴𝑜 suc 𝑦)))
3836, 37syl5com 31 . . . . 5 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝑦 ∈ On) → (suc 𝑦 ⊆ suc (𝐴𝑜 𝑦) → suc 𝑦 ⊆ (𝐴𝑜 suc 𝑦)))
3923, 38sylbid 230 . . . 4 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝑦 ∈ On) → (𝑦 ⊆ (𝐴𝑜 𝑦) → suc 𝑦 ⊆ (𝐴𝑜 suc 𝑦)))
4039expcom 451 . . 3 (𝑦 ∈ On → (𝐴 ∈ (On ∖ 2𝑜) → (𝑦 ⊆ (𝐴𝑜 𝑦) → suc 𝑦 ⊆ (𝐴𝑜 suc 𝑦))))
41 dif20el 7530 . . . . 5 (𝐴 ∈ (On ∖ 2𝑜) → ∅ ∈ 𝐴)
4217, 41jca 554 . . . 4 (𝐴 ∈ (On ∖ 2𝑜) → (𝐴 ∈ On ∧ ∅ ∈ 𝐴))
43 ss2iun 4502 . . . . . 6 (∀𝑦𝑥 𝑦 ⊆ (𝐴𝑜 𝑦) → 𝑦𝑥 𝑦 𝑦𝑥 (𝐴𝑜 𝑦))
44 limuni 5744 . . . . . . . . 9 (Lim 𝑥𝑥 = 𝑥)
45 uniiun 4539 . . . . . . . . 9 𝑥 = 𝑦𝑥 𝑦
4644, 45syl6eq 2671 . . . . . . . 8 (Lim 𝑥𝑥 = 𝑦𝑥 𝑦)
4746adantr 481 . . . . . . 7 ((Lim 𝑥 ∧ (𝐴 ∈ On ∧ ∅ ∈ 𝐴)) → 𝑥 = 𝑦𝑥 𝑦)
48 vex 3189 . . . . . . . . . 10 𝑥 ∈ V
49 oelim 7559 . . . . . . . . . 10 (((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ ∅ ∈ 𝐴) → (𝐴𝑜 𝑥) = 𝑦𝑥 (𝐴𝑜 𝑦))
5048, 49mpanlr1 721 . . . . . . . . 9 (((𝐴 ∈ On ∧ Lim 𝑥) ∧ ∅ ∈ 𝐴) → (𝐴𝑜 𝑥) = 𝑦𝑥 (𝐴𝑜 𝑦))
5150anasss 678 . . . . . . . 8 ((𝐴 ∈ On ∧ (Lim 𝑥 ∧ ∅ ∈ 𝐴)) → (𝐴𝑜 𝑥) = 𝑦𝑥 (𝐴𝑜 𝑦))
5251an12s 842 . . . . . . 7 ((Lim 𝑥 ∧ (𝐴 ∈ On ∧ ∅ ∈ 𝐴)) → (𝐴𝑜 𝑥) = 𝑦𝑥 (𝐴𝑜 𝑦))
5347, 52sseq12d 3613 . . . . . 6 ((Lim 𝑥 ∧ (𝐴 ∈ On ∧ ∅ ∈ 𝐴)) → (𝑥 ⊆ (𝐴𝑜 𝑥) ↔ 𝑦𝑥 𝑦 𝑦𝑥 (𝐴𝑜 𝑦)))
5443, 53syl5ibr 236 . . . . 5 ((Lim 𝑥 ∧ (𝐴 ∈ On ∧ ∅ ∈ 𝐴)) → (∀𝑦𝑥 𝑦 ⊆ (𝐴𝑜 𝑦) → 𝑥 ⊆ (𝐴𝑜 𝑥)))
5554ex 450 . . . 4 (Lim 𝑥 → ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → (∀𝑦𝑥 𝑦 ⊆ (𝐴𝑜 𝑦) → 𝑥 ⊆ (𝐴𝑜 𝑥))))
5642, 55syl5 34 . . 3 (Lim 𝑥 → (𝐴 ∈ (On ∖ 2𝑜) → (∀𝑦𝑥 𝑦 ⊆ (𝐴𝑜 𝑦) → 𝑥 ⊆ (𝐴𝑜 𝑥))))
573, 6, 9, 12, 14, 40, 56tfinds3 7011 . 2 (𝐵 ∈ On → (𝐴 ∈ (On ∖ 2𝑜) → 𝐵 ⊆ (𝐴𝑜 𝐵)))
5857impcom 446 1 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ On) → 𝐵 ⊆ (𝐴𝑜 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wral 2907  Vcvv 3186  cdif 3552  wss 3555  c0 3891   cuni 4402   ciun 4485  Ord word 5681  Oncon0 5682  Lim wlim 5683  suc csuc 5684  (class class class)co 6604  2𝑜c2o 7499  𝑜 coe 7504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-2o 7506  df-oadd 7509  df-omul 7510  df-oexp 7511
This theorem is referenced by:  oeeulem  7626  cnfcom3clem  8546
  Copyright terms: Public domain W3C validator