Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofaddmndmap Structured version   Visualization version   GIF version

Theorem ofaddmndmap 44399
Description: The function operation applied to the addition for functions (with the same domain) into a monoid is a function (with the same domain) into the monoid. (Contributed by AV, 6-Apr-2019.)
Hypotheses
Ref Expression
ofaddmndmap.r 𝑅 = (Base‘𝑀)
ofaddmndmap.p + = (+g𝑀)
Assertion
Ref Expression
ofaddmndmap ((𝑀 ∈ Mnd ∧ 𝑉𝑌 ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → (𝐴f + 𝐵) ∈ (𝑅m 𝑉))

Proof of Theorem ofaddmndmap
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl1 1187 . . . 4 (((𝑀 ∈ Mnd ∧ 𝑉𝑌 ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) ∧ (𝑥𝑅𝑦𝑅)) → 𝑀 ∈ Mnd)
2 simprl 769 . . . 4 (((𝑀 ∈ Mnd ∧ 𝑉𝑌 ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) ∧ (𝑥𝑅𝑦𝑅)) → 𝑥𝑅)
3 simprr 771 . . . 4 (((𝑀 ∈ Mnd ∧ 𝑉𝑌 ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) ∧ (𝑥𝑅𝑦𝑅)) → 𝑦𝑅)
4 ofaddmndmap.r . . . . 5 𝑅 = (Base‘𝑀)
5 ofaddmndmap.p . . . . 5 + = (+g𝑀)
64, 5mndcl 17922 . . . 4 ((𝑀 ∈ Mnd ∧ 𝑥𝑅𝑦𝑅) → (𝑥 + 𝑦) ∈ 𝑅)
71, 2, 3, 6syl3anc 1367 . . 3 (((𝑀 ∈ Mnd ∧ 𝑉𝑌 ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) ∧ (𝑥𝑅𝑦𝑅)) → (𝑥 + 𝑦) ∈ 𝑅)
8 elmapi 8431 . . . . 5 (𝐴 ∈ (𝑅m 𝑉) → 𝐴:𝑉𝑅)
98adantr 483 . . . 4 ((𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) → 𝐴:𝑉𝑅)
1093ad2ant3 1131 . . 3 ((𝑀 ∈ Mnd ∧ 𝑉𝑌 ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → 𝐴:𝑉𝑅)
11 elmapi 8431 . . . . 5 (𝐵 ∈ (𝑅m 𝑉) → 𝐵:𝑉𝑅)
1211adantl 484 . . . 4 ((𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) → 𝐵:𝑉𝑅)
13123ad2ant3 1131 . . 3 ((𝑀 ∈ Mnd ∧ 𝑉𝑌 ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → 𝐵:𝑉𝑅)
14 simp2 1133 . . 3 ((𝑀 ∈ Mnd ∧ 𝑉𝑌 ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → 𝑉𝑌)
15 inidm 4198 . . 3 (𝑉𝑉) = 𝑉
167, 10, 13, 14, 14, 15off 7427 . 2 ((𝑀 ∈ Mnd ∧ 𝑉𝑌 ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → (𝐴f + 𝐵):𝑉𝑅)
174fvexi 6687 . . 3 𝑅 ∈ V
18 elmapg 8422 . . 3 ((𝑅 ∈ V ∧ 𝑉𝑌) → ((𝐴f + 𝐵) ∈ (𝑅m 𝑉) ↔ (𝐴f + 𝐵):𝑉𝑅))
1917, 14, 18sylancr 589 . 2 ((𝑀 ∈ Mnd ∧ 𝑉𝑌 ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → ((𝐴f + 𝐵) ∈ (𝑅m 𝑉) ↔ (𝐴f + 𝐵):𝑉𝑅))
2016, 19mpbird 259 1 ((𝑀 ∈ Mnd ∧ 𝑉𝑌 ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → (𝐴f + 𝐵) ∈ (𝑅m 𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1536  wcel 2113  Vcvv 3497  wf 6354  cfv 6358  (class class class)co 7159  f cof 7410  m cmap 8409  Basecbs 16486  +gcplusg 16568  Mndcmnd 17914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-ov 7162  df-oprab 7163  df-mpo 7164  df-of 7412  df-1st 7692  df-2nd 7693  df-map 8411  df-mgm 17855  df-sgrp 17904  df-mnd 17915
This theorem is referenced by:  lincsumcl  44493
  Copyright terms: Public domain W3C validator