![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ofc1 | Structured version Visualization version GIF version |
Description: Left operation by a constant. (Contributed by Mario Carneiro, 24-Jul-2014.) |
Ref | Expression |
---|---|
ofc1.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
ofc1.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
ofc1.3 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
ofc1.4 | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) = 𝐶) |
Ref | Expression |
---|---|
ofc1 | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (((𝐴 × {𝐵}) ∘𝑓 𝑅𝐹)‘𝑋) = (𝐵𝑅𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ofc1.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
2 | fnconstg 6254 | . . 3 ⊢ (𝐵 ∈ 𝑊 → (𝐴 × {𝐵}) Fn 𝐴) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → (𝐴 × {𝐵}) Fn 𝐴) |
4 | ofc1.3 | . 2 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
5 | ofc1.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
6 | inidm 3965 | . 2 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
7 | fvconst2g 6631 | . . 3 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝑋 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝑋) = 𝐵) | |
8 | 1, 7 | sylan 489 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝑋) = 𝐵) |
9 | ofc1.4 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) = 𝐶) | |
10 | 3, 4, 5, 5, 6, 8, 9 | ofval 7071 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (((𝐴 × {𝐵}) ∘𝑓 𝑅𝐹)‘𝑋) = (𝐵𝑅𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 {csn 4321 × cxp 5264 Fn wfn 6044 ‘cfv 6049 (class class class)co 6813 ∘𝑓 cof 7060 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-of 7062 |
This theorem is referenced by: ofnegsub 11210 pwsvscaval 16357 lmhmvsca 19247 psrvscaval 19594 mplvscaval 19650 coe1sclmulfv 19855 mamuvs1 20413 mamuvs2 20414 matvscacell 20444 mdetrsca 20611 mbfmulc2lem 23613 i1fmulclem 23668 itg1mulc 23670 itg2monolem1 23716 uc1pmon1p 24110 coemulc 24210 basellem9 25014 ofdivrec 39027 |
Copyright terms: Public domain | W3C validator |