![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ofcfval2 | Structured version Visualization version GIF version |
Description: The function operation expressed as a mapping. (Contributed by Thierry Arnoux, 31-Jan-2017.) |
Ref | Expression |
---|---|
ofcfval2.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
ofcfval2.2 | ⊢ (𝜑 → 𝐶 ∈ 𝑊) |
ofcfval2.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑋) |
ofcfval2.4 | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵)) |
Ref | Expression |
---|---|
ofcfval2 | ⊢ (𝜑 → (𝐹∘𝑓/𝑐𝑅𝐶) = (𝑥 ∈ 𝐴 ↦ (𝐵𝑅𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ofcfval2.3 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑋) | |
2 | 1 | ralrimiva 3102 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑋) |
3 | eqid 2758 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
4 | 3 | fnmpt 6179 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑋 → (𝑥 ∈ 𝐴 ↦ 𝐵) Fn 𝐴) |
5 | 2, 4 | syl 17 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) Fn 𝐴) |
6 | ofcfval2.4 | . . . 4 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵)) | |
7 | 6 | fneq1d 6140 | . . 3 ⊢ (𝜑 → (𝐹 Fn 𝐴 ↔ (𝑥 ∈ 𝐴 ↦ 𝐵) Fn 𝐴)) |
8 | 5, 7 | mpbird 247 | . 2 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
9 | ofcfval2.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
10 | ofcfval2.2 | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝑊) | |
11 | 6, 1 | fvmpt2d 6453 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐵) |
12 | 8, 9, 10, 11 | ofcfval 30467 | 1 ⊢ (𝜑 → (𝐹∘𝑓/𝑐𝑅𝐶) = (𝑥 ∈ 𝐴 ↦ (𝐵𝑅𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1630 ∈ wcel 2137 ∀wral 3048 ↦ cmpt 4879 Fn wfn 6042 (class class class)co 6811 ∘𝑓/𝑐cofc 30464 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1986 ax-6 2052 ax-7 2088 ax-8 2139 ax-9 2146 ax-10 2166 ax-11 2181 ax-12 2194 ax-13 2389 ax-ext 2738 ax-rep 4921 ax-sep 4931 ax-nul 4939 ax-pow 4990 ax-pr 5053 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2045 df-eu 2609 df-mo 2610 df-clab 2745 df-cleq 2751 df-clel 2754 df-nfc 2889 df-ne 2931 df-ral 3053 df-rex 3054 df-reu 3055 df-rab 3057 df-v 3340 df-sbc 3575 df-csb 3673 df-dif 3716 df-un 3718 df-in 3720 df-ss 3727 df-nul 4057 df-if 4229 df-sn 4320 df-pr 4322 df-op 4326 df-uni 4587 df-iun 4672 df-br 4803 df-opab 4863 df-mpt 4880 df-id 5172 df-xp 5270 df-rel 5271 df-cnv 5272 df-co 5273 df-dm 5274 df-rn 5275 df-res 5276 df-ima 5277 df-iota 6010 df-fun 6049 df-fn 6050 df-f 6051 df-f1 6052 df-fo 6053 df-f1o 6054 df-fv 6055 df-ov 6814 df-oprab 6815 df-mpt2 6816 df-ofc 30465 |
This theorem is referenced by: coinflippv 30852 ofcs1 30928 |
Copyright terms: Public domain | W3C validator |