Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofdivdiv2 Structured version   Visualization version   GIF version

Theorem ofdivdiv2 40667
Description: Function analogue of divdiv2 11354. (Contributed by Steve Rodriguez, 23-Nov-2015.)
Assertion
Ref Expression
ofdivdiv2 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) → (𝐹f / (𝐺f / 𝐻)) = ((𝐹f · 𝐻) ∘f / 𝐺))

Proof of Theorem ofdivdiv2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpll 765 . 2 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) → 𝐴𝑉)
2 simplr 767 . . 3 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) → 𝐹:𝐴⟶ℂ)
32ffnd 6517 . 2 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) → 𝐹 Fn 𝐴)
4 simprl 769 . . . 4 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) → 𝐺:𝐴⟶(ℂ ∖ {0}))
54ffnd 6517 . . 3 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) → 𝐺 Fn 𝐴)
6 simprr 771 . . . 4 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) → 𝐻:𝐴⟶(ℂ ∖ {0}))
76ffnd 6517 . . 3 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) → 𝐻 Fn 𝐴)
8 inidm 4197 . . 3 (𝐴𝐴) = 𝐴
95, 7, 1, 1, 8offn 7422 . 2 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) → (𝐺f / 𝐻) Fn 𝐴)
103, 7, 1, 1, 8offn 7422 . . 3 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) → (𝐹f · 𝐻) Fn 𝐴)
1110, 5, 1, 1, 8offn 7422 . 2 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) → ((𝐹f · 𝐻) ∘f / 𝐺) Fn 𝐴)
12 eqidd 2824 . 2 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) ∧ 𝑥𝐴) → (𝐹𝑥) = (𝐹𝑥))
13 eqidd 2824 . 2 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) ∧ 𝑥𝐴) → ((𝐺f / 𝐻)‘𝑥) = ((𝐺f / 𝐻)‘𝑥))
14 ffvelrn 6851 . . . . 5 ((𝐹:𝐴⟶ℂ ∧ 𝑥𝐴) → (𝐹𝑥) ∈ ℂ)
152, 14sylan 582 . . . 4 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ ℂ)
16 ffvelrn 6851 . . . . . 6 ((𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝑥𝐴) → (𝐺𝑥) ∈ (ℂ ∖ {0}))
17 eldifsn 4721 . . . . . 6 ((𝐺𝑥) ∈ (ℂ ∖ {0}) ↔ ((𝐺𝑥) ∈ ℂ ∧ (𝐺𝑥) ≠ 0))
1816, 17sylib 220 . . . . 5 ((𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝑥𝐴) → ((𝐺𝑥) ∈ ℂ ∧ (𝐺𝑥) ≠ 0))
194, 18sylan 582 . . . 4 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) ∧ 𝑥𝐴) → ((𝐺𝑥) ∈ ℂ ∧ (𝐺𝑥) ≠ 0))
20 ffvelrn 6851 . . . . . 6 ((𝐻:𝐴⟶(ℂ ∖ {0}) ∧ 𝑥𝐴) → (𝐻𝑥) ∈ (ℂ ∖ {0}))
21 eldifsn 4721 . . . . . 6 ((𝐻𝑥) ∈ (ℂ ∖ {0}) ↔ ((𝐻𝑥) ∈ ℂ ∧ (𝐻𝑥) ≠ 0))
2220, 21sylib 220 . . . . 5 ((𝐻:𝐴⟶(ℂ ∖ {0}) ∧ 𝑥𝐴) → ((𝐻𝑥) ∈ ℂ ∧ (𝐻𝑥) ≠ 0))
236, 22sylan 582 . . . 4 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) ∧ 𝑥𝐴) → ((𝐻𝑥) ∈ ℂ ∧ (𝐻𝑥) ≠ 0))
24 divdiv2 11354 . . . 4 (((𝐹𝑥) ∈ ℂ ∧ ((𝐺𝑥) ∈ ℂ ∧ (𝐺𝑥) ≠ 0) ∧ ((𝐻𝑥) ∈ ℂ ∧ (𝐻𝑥) ≠ 0)) → ((𝐹𝑥) / ((𝐺𝑥) / (𝐻𝑥))) = (((𝐹𝑥) · (𝐻𝑥)) / (𝐺𝑥)))
2515, 19, 23, 24syl3anc 1367 . . 3 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) ∧ 𝑥𝐴) → ((𝐹𝑥) / ((𝐺𝑥) / (𝐻𝑥))) = (((𝐹𝑥) · (𝐻𝑥)) / (𝐺𝑥)))
26 eqidd 2824 . . . . 5 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) ∧ 𝑥𝐴) → (𝐺𝑥) = (𝐺𝑥))
27 eqidd 2824 . . . . 5 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) ∧ 𝑥𝐴) → (𝐻𝑥) = (𝐻𝑥))
285, 7, 1, 1, 8, 26, 27ofval 7420 . . . 4 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) ∧ 𝑥𝐴) → ((𝐺f / 𝐻)‘𝑥) = ((𝐺𝑥) / (𝐻𝑥)))
2928oveq2d 7174 . . 3 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) ∧ 𝑥𝐴) → ((𝐹𝑥) / ((𝐺f / 𝐻)‘𝑥)) = ((𝐹𝑥) / ((𝐺𝑥) / (𝐻𝑥))))
303, 7, 1, 1, 8, 12, 27ofval 7420 . . . 4 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) ∧ 𝑥𝐴) → ((𝐹f · 𝐻)‘𝑥) = ((𝐹𝑥) · (𝐻𝑥)))
3110, 5, 1, 1, 8, 30, 26ofval 7420 . . 3 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) ∧ 𝑥𝐴) → (((𝐹f · 𝐻) ∘f / 𝐺)‘𝑥) = (((𝐹𝑥) · (𝐻𝑥)) / (𝐺𝑥)))
3225, 29, 313eqtr4d 2868 . 2 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) ∧ 𝑥𝐴) → ((𝐹𝑥) / ((𝐺f / 𝐻)‘𝑥)) = (((𝐹f · 𝐻) ∘f / 𝐺)‘𝑥))
331, 3, 9, 11, 12, 13, 32offveq 7432 1 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) → (𝐹f / (𝐺f / 𝐻)) = ((𝐹f · 𝐻) ∘f / 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wne 3018  cdif 3935  {csn 4569  wf 6353  cfv 6357  (class class class)co 7158  f cof 7409  cc 10537  0cc0 10539   · cmul 10544   / cdiv 11299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-po 5476  df-so 5477  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator