MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofeq Structured version   Visualization version   GIF version

Theorem ofeq 6941
Description: Equality theorem for function operation. (Contributed by Mario Carneiro, 20-Jul-2014.)
Assertion
Ref Expression
ofeq (𝑅 = 𝑆 → ∘𝑓 𝑅 = ∘𝑓 𝑆)

Proof of Theorem ofeq
Dummy variables 𝑓 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1081 . . . . 5 ((𝑅 = 𝑆𝑓 ∈ V ∧ 𝑔 ∈ V) → 𝑅 = 𝑆)
21oveqd 6707 . . . 4 ((𝑅 = 𝑆𝑓 ∈ V ∧ 𝑔 ∈ V) → ((𝑓𝑥)𝑅(𝑔𝑥)) = ((𝑓𝑥)𝑆(𝑔𝑥)))
32mpteq2dv 4778 . . 3 ((𝑅 = 𝑆𝑓 ∈ V ∧ 𝑔 ∈ V) → (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥))) = (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑆(𝑔𝑥))))
43mpt2eq3dva 6761 . 2 (𝑅 = 𝑆 → (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥)))) = (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑆(𝑔𝑥)))))
5 df-of 6939 . 2 𝑓 𝑅 = (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥))))
6 df-of 6939 . 2 𝑓 𝑆 = (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑆(𝑔𝑥))))
74, 5, 63eqtr4g 2710 1 (𝑅 = 𝑆 → ∘𝑓 𝑅 = ∘𝑓 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1054   = wceq 1523  wcel 2030  Vcvv 3231  cin 3606  cmpt 4762  dom cdm 5143  cfv 5926  (class class class)co 6690  cmpt2 6692  𝑓 cof 6937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-uni 4469  df-br 4686  df-opab 4746  df-mpt 4763  df-iota 5889  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939
This theorem is referenced by:  psrval  19410  resspsradd  19464  resspsrvsca  19466  sitmval  30539  ldualset  34730  mendval  38070  mendplusgfval  38072  mendvscafval  38077
  Copyright terms: Public domain W3C validator