MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofmresex Structured version   Visualization version   GIF version

Theorem ofmresex 7029
Description: Existence of a restriction of the function operation map. (Contributed by NM, 20-Oct-2014.)
Hypotheses
Ref Expression
ofmresex.a (𝜑𝐴𝑉)
ofmresex.b (𝜑𝐵𝑊)
Assertion
Ref Expression
ofmresex (𝜑 → ( ∘𝑓 𝑅 ↾ (𝐴 × 𝐵)) ∈ V)

Proof of Theorem ofmresex
StepHypRef Expression
1 ofmresex.a . . 3 (𝜑𝐴𝑉)
2 ofmresex.b . . 3 (𝜑𝐵𝑊)
3 xpexg 6831 . . 3 ((𝐴𝑉𝐵𝑊) → (𝐴 × 𝐵) ∈ V)
41, 2, 3syl2anc 690 . 2 (𝜑 → (𝐴 × 𝐵) ∈ V)
5 ofexg 6772 . 2 ((𝐴 × 𝐵) ∈ V → ( ∘𝑓 𝑅 ↾ (𝐴 × 𝐵)) ∈ V)
64, 5syl 17 1 (𝜑 → ( ∘𝑓 𝑅 ↾ (𝐴 × 𝐵)) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 1975  Vcvv 3168   × cxp 5022  cres 5026  𝑓 cof 6766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2228  ax-ext 2585  ax-rep 4689  ax-sep 4699  ax-nul 4708  ax-pow 4760  ax-pr 4824  ax-un 6820
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2457  df-mo 2458  df-clab 2592  df-cleq 2598  df-clel 2601  df-nfc 2735  df-ne 2777  df-ral 2896  df-rex 2897  df-reu 2898  df-rab 2900  df-v 3170  df-sbc 3398  df-csb 3495  df-dif 3538  df-un 3540  df-in 3542  df-ss 3549  df-nul 3870  df-if 4032  df-pw 4105  df-sn 4121  df-pr 4123  df-op 4127  df-uni 4363  df-iun 4447  df-br 4574  df-opab 4634  df-mpt 4635  df-id 4939  df-xp 5030  df-rel 5031  df-cnv 5032  df-co 5033  df-dm 5034  df-rn 5035  df-res 5036  df-ima 5037  df-iota 5750  df-fun 5788  df-fn 5789  df-f 5790  df-f1 5791  df-fo 5792  df-f1o 5793  df-fv 5794  df-oprab 6527  df-mpt2 6528  df-of 6768
This theorem is referenced by:  ldualfvadd  33232
  Copyright terms: Public domain W3C validator