![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ofnegsub | Structured version Visualization version GIF version |
Description: Function analogue of negsub 10367. (Contributed by Mario Carneiro, 24-Jul-2014.) |
Ref | Expression |
---|---|
ofnegsub | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → (𝐹 ∘𝑓 + ((𝐴 × {-1}) ∘𝑓 · 𝐺)) = (𝐹 ∘𝑓 − 𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1081 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → 𝐴 ∈ 𝑉) | |
2 | simp2 1082 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → 𝐹:𝐴⟶ℂ) | |
3 | ffn 6083 | . . 3 ⊢ (𝐹:𝐴⟶ℂ → 𝐹 Fn 𝐴) | |
4 | 2, 3 | syl 17 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → 𝐹 Fn 𝐴) |
5 | ax-1cn 10032 | . . . . 5 ⊢ 1 ∈ ℂ | |
6 | 5 | negcli 10387 | . . . 4 ⊢ -1 ∈ ℂ |
7 | fnconstg 6131 | . . . 4 ⊢ (-1 ∈ ℂ → (𝐴 × {-1}) Fn 𝐴) | |
8 | 6, 7 | mp1i 13 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → (𝐴 × {-1}) Fn 𝐴) |
9 | simp3 1083 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → 𝐺:𝐴⟶ℂ) | |
10 | ffn 6083 | . . . 4 ⊢ (𝐺:𝐴⟶ℂ → 𝐺 Fn 𝐴) | |
11 | 9, 10 | syl 17 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → 𝐺 Fn 𝐴) |
12 | inidm 3855 | . . 3 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
13 | 8, 11, 1, 1, 12 | offn 6950 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → ((𝐴 × {-1}) ∘𝑓 · 𝐺) Fn 𝐴) |
14 | 4, 11, 1, 1, 12 | offn 6950 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → (𝐹 ∘𝑓 − 𝐺) Fn 𝐴) |
15 | eqidd 2652 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐹‘𝑥)) | |
16 | 6 | a1i 11 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → -1 ∈ ℂ) |
17 | eqidd 2652 | . . . 4 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) = (𝐺‘𝑥)) | |
18 | 1, 16, 11, 17 | ofc1 6962 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥 ∈ 𝐴) → (((𝐴 × {-1}) ∘𝑓 · 𝐺)‘𝑥) = (-1 · (𝐺‘𝑥))) |
19 | 9 | ffvelrnda 6399 | . . . 4 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) ∈ ℂ) |
20 | 19 | mulm1d 10520 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥 ∈ 𝐴) → (-1 · (𝐺‘𝑥)) = -(𝐺‘𝑥)) |
21 | 18, 20 | eqtrd 2685 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥 ∈ 𝐴) → (((𝐴 × {-1}) ∘𝑓 · 𝐺)‘𝑥) = -(𝐺‘𝑥)) |
22 | 2 | ffvelrnda 6399 | . . . 4 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ ℂ) |
23 | 22, 19 | negsubd 10436 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) + -(𝐺‘𝑥)) = ((𝐹‘𝑥) − (𝐺‘𝑥))) |
24 | 4, 11, 1, 1, 12, 15, 17 | ofval 6948 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥 ∈ 𝐴) → ((𝐹 ∘𝑓 − 𝐺)‘𝑥) = ((𝐹‘𝑥) − (𝐺‘𝑥))) |
25 | 23, 24 | eqtr4d 2688 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) + -(𝐺‘𝑥)) = ((𝐹 ∘𝑓 − 𝐺)‘𝑥)) |
26 | 1, 4, 13, 14, 15, 21, 25 | offveq 6960 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → (𝐹 ∘𝑓 + ((𝐴 × {-1}) ∘𝑓 · 𝐺)) = (𝐹 ∘𝑓 − 𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1054 = wceq 1523 ∈ wcel 2030 {csn 4210 × cxp 5141 Fn wfn 5921 ⟶wf 5922 ‘cfv 5926 (class class class)co 6690 ∘𝑓 cof 6937 ℂcc 9972 1c1 9975 + caddc 9977 · cmul 9979 − cmin 10304 -cneg 10305 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-po 5064 df-so 5065 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-of 6939 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-pnf 10114 df-mnf 10115 df-ltxr 10117 df-sub 10306 df-neg 10307 |
This theorem is referenced by: i1fsub 23520 itg1sub 23521 plysub 24020 coesub 24058 dgrsub 24073 basellem9 24860 expgrowth 38851 |
Copyright terms: Public domain | W3C validator |