MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofres Structured version   Visualization version   GIF version

Theorem ofres 7414
Description: Restrict the operands of a function operation to the same domain as that of the operation itself. (Contributed by Mario Carneiro, 15-Sep-2014.)
Hypotheses
Ref Expression
ofres.1 (𝜑𝐹 Fn 𝐴)
ofres.2 (𝜑𝐺 Fn 𝐵)
ofres.3 (𝜑𝐴𝑉)
ofres.4 (𝜑𝐵𝑊)
ofres.5 (𝐴𝐵) = 𝐶
Assertion
Ref Expression
ofres (𝜑 → (𝐹f 𝑅𝐺) = ((𝐹𝐶) ∘f 𝑅(𝐺𝐶)))

Proof of Theorem ofres
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ofres.1 . . 3 (𝜑𝐹 Fn 𝐴)
2 ofres.2 . . 3 (𝜑𝐺 Fn 𝐵)
3 ofres.3 . . 3 (𝜑𝐴𝑉)
4 ofres.4 . . 3 (𝜑𝐵𝑊)
5 ofres.5 . . 3 (𝐴𝐵) = 𝐶
6 eqidd 2819 . . 3 ((𝜑𝑥𝐴) → (𝐹𝑥) = (𝐹𝑥))
7 eqidd 2819 . . 3 ((𝜑𝑥𝐵) → (𝐺𝑥) = (𝐺𝑥))
81, 2, 3, 4, 5, 6, 7offval 7405 . 2 (𝜑 → (𝐹f 𝑅𝐺) = (𝑥𝐶 ↦ ((𝐹𝑥)𝑅(𝐺𝑥))))
9 inss1 4202 . . . . 5 (𝐴𝐵) ⊆ 𝐴
105, 9eqsstrri 3999 . . . 4 𝐶𝐴
11 fnssres 6463 . . . 4 ((𝐹 Fn 𝐴𝐶𝐴) → (𝐹𝐶) Fn 𝐶)
121, 10, 11sylancl 586 . . 3 (𝜑 → (𝐹𝐶) Fn 𝐶)
13 inss2 4203 . . . . 5 (𝐴𝐵) ⊆ 𝐵
145, 13eqsstrri 3999 . . . 4 𝐶𝐵
15 fnssres 6463 . . . 4 ((𝐺 Fn 𝐵𝐶𝐵) → (𝐺𝐶) Fn 𝐶)
162, 14, 15sylancl 586 . . 3 (𝜑 → (𝐺𝐶) Fn 𝐶)
17 ssexg 5218 . . . 4 ((𝐶𝐴𝐴𝑉) → 𝐶 ∈ V)
1810, 3, 17sylancr 587 . . 3 (𝜑𝐶 ∈ V)
19 inidm 4192 . . 3 (𝐶𝐶) = 𝐶
20 fvres 6682 . . . 4 (𝑥𝐶 → ((𝐹𝐶)‘𝑥) = (𝐹𝑥))
2120adantl 482 . . 3 ((𝜑𝑥𝐶) → ((𝐹𝐶)‘𝑥) = (𝐹𝑥))
22 fvres 6682 . . . 4 (𝑥𝐶 → ((𝐺𝐶)‘𝑥) = (𝐺𝑥))
2322adantl 482 . . 3 ((𝜑𝑥𝐶) → ((𝐺𝐶)‘𝑥) = (𝐺𝑥))
2412, 16, 18, 18, 19, 21, 23offval 7405 . 2 (𝜑 → ((𝐹𝐶) ∘f 𝑅(𝐺𝐶)) = (𝑥𝐶 ↦ ((𝐹𝑥)𝑅(𝐺𝑥))))
258, 24eqtr4d 2856 1 (𝜑 → (𝐹f 𝑅𝐺) = ((𝐹𝐶) ∘f 𝑅(𝐺𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wcel 2105  Vcvv 3492  cin 3932  wss 3933  cmpt 5137  cres 5550   Fn wfn 6343  cfv 6348  (class class class)co 7145  f cof 7396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pr 5320
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator