Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ogrpinv0lt Structured version   Visualization version   GIF version

Theorem ogrpinv0lt 30718
Description: In an ordered group, the ordering is compatible with group inverse. (Contributed by Thierry Arnoux, 3-Sep-2018.)
Hypotheses
Ref Expression
ogrpinvlt.0 𝐵 = (Base‘𝐺)
ogrpinvlt.1 < = (lt‘𝐺)
ogrpinvlt.2 𝐼 = (invg𝐺)
ogrpinv0lt.3 0 = (0g𝐺)
Assertion
Ref Expression
ogrpinv0lt ((𝐺 ∈ oGrp ∧ 𝑋𝐵) → ( 0 < 𝑋 ↔ (𝐼𝑋) < 0 ))

Proof of Theorem ogrpinv0lt
StepHypRef Expression
1 simpll 765 . . . 4 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ 0 < 𝑋) → 𝐺 ∈ oGrp)
2 ogrpgrp 30699 . . . . . 6 (𝐺 ∈ oGrp → 𝐺 ∈ Grp)
31, 2syl 17 . . . . 5 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ 0 < 𝑋) → 𝐺 ∈ Grp)
4 ogrpinvlt.0 . . . . . 6 𝐵 = (Base‘𝐺)
5 ogrpinv0lt.3 . . . . . 6 0 = (0g𝐺)
64, 5grpidcl 18125 . . . . 5 (𝐺 ∈ Grp → 0𝐵)
73, 6syl 17 . . . 4 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ 0 < 𝑋) → 0𝐵)
8 simplr 767 . . . 4 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ 0 < 𝑋) → 𝑋𝐵)
9 ogrpinvlt.2 . . . . . 6 𝐼 = (invg𝐺)
104, 9grpinvcl 18145 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝐼𝑋) ∈ 𝐵)
113, 8, 10syl2anc 586 . . . 4 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ 0 < 𝑋) → (𝐼𝑋) ∈ 𝐵)
12 simpr 487 . . . 4 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ 0 < 𝑋) → 0 < 𝑋)
13 ogrpinvlt.1 . . . . 5 < = (lt‘𝐺)
14 eqid 2821 . . . . 5 (+g𝐺) = (+g𝐺)
154, 13, 14ogrpaddlt 30713 . . . 4 ((𝐺 ∈ oGrp ∧ ( 0𝐵𝑋𝐵 ∧ (𝐼𝑋) ∈ 𝐵) ∧ 0 < 𝑋) → ( 0 (+g𝐺)(𝐼𝑋)) < (𝑋(+g𝐺)(𝐼𝑋)))
161, 7, 8, 11, 12, 15syl131anc 1379 . . 3 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ 0 < 𝑋) → ( 0 (+g𝐺)(𝐼𝑋)) < (𝑋(+g𝐺)(𝐼𝑋)))
174, 14, 5grplid 18127 . . . 4 ((𝐺 ∈ Grp ∧ (𝐼𝑋) ∈ 𝐵) → ( 0 (+g𝐺)(𝐼𝑋)) = (𝐼𝑋))
183, 11, 17syl2anc 586 . . 3 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ 0 < 𝑋) → ( 0 (+g𝐺)(𝐼𝑋)) = (𝐼𝑋))
194, 14, 5, 9grprinv 18147 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋(+g𝐺)(𝐼𝑋)) = 0 )
203, 8, 19syl2anc 586 . . 3 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ 0 < 𝑋) → (𝑋(+g𝐺)(𝐼𝑋)) = 0 )
2116, 18, 203brtr3d 5090 . 2 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ 0 < 𝑋) → (𝐼𝑋) < 0 )
22 simpll 765 . . . 4 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ (𝐼𝑋) < 0 ) → 𝐺 ∈ oGrp)
2322, 2syl 17 . . . . 5 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ (𝐼𝑋) < 0 ) → 𝐺 ∈ Grp)
24 simplr 767 . . . . 5 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ (𝐼𝑋) < 0 ) → 𝑋𝐵)
2523, 24, 10syl2anc 586 . . . 4 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ (𝐼𝑋) < 0 ) → (𝐼𝑋) ∈ 𝐵)
2622, 2, 63syl 18 . . . 4 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ (𝐼𝑋) < 0 ) → 0𝐵)
27 simpr 487 . . . 4 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ (𝐼𝑋) < 0 ) → (𝐼𝑋) < 0 )
284, 13, 14ogrpaddlt 30713 . . . 4 ((𝐺 ∈ oGrp ∧ ((𝐼𝑋) ∈ 𝐵0𝐵𝑋𝐵) ∧ (𝐼𝑋) < 0 ) → ((𝐼𝑋)(+g𝐺)𝑋) < ( 0 (+g𝐺)𝑋))
2922, 25, 26, 24, 27, 28syl131anc 1379 . . 3 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ (𝐼𝑋) < 0 ) → ((𝐼𝑋)(+g𝐺)𝑋) < ( 0 (+g𝐺)𝑋))
304, 14, 5, 9grplinv 18146 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((𝐼𝑋)(+g𝐺)𝑋) = 0 )
3123, 24, 30syl2anc 586 . . 3 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ (𝐼𝑋) < 0 ) → ((𝐼𝑋)(+g𝐺)𝑋) = 0 )
324, 14, 5grplid 18127 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ( 0 (+g𝐺)𝑋) = 𝑋)
3323, 24, 32syl2anc 586 . . 3 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ (𝐼𝑋) < 0 ) → ( 0 (+g𝐺)𝑋) = 𝑋)
3429, 31, 333brtr3d 5090 . 2 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ (𝐼𝑋) < 0 ) → 0 < 𝑋)
3521, 34impbida 799 1 ((𝐺 ∈ oGrp ∧ 𝑋𝐵) → ( 0 < 𝑋 ↔ (𝐼𝑋) < 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110   class class class wbr 5059  cfv 6350  (class class class)co 7150  Basecbs 16477  +gcplusg 16559  0gc0g 16707  ltcplt 17545  Grpcgrp 18097  invgcminusg 18098  oGrpcogrp 30694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5455  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-fv 6358  df-riota 7108  df-ov 7153  df-0g 16709  df-plt 17562  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-grp 18100  df-minusg 18101  df-omnd 30695  df-ogrp 30696
This theorem is referenced by:  archirngz  30813
  Copyright terms: Public domain W3C validator