Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ogrpsublt Structured version   Visualization version   GIF version

Theorem ogrpsublt 29531
Description: In an ordered group, strict ordering is compatible with group addition. (Contributed by Thierry Arnoux, 3-Sep-2018.)
Hypotheses
Ref Expression
ogrpsublt.0 𝐵 = (Base‘𝐺)
ogrpsublt.1 < = (lt‘𝐺)
ogrpsublt.2 = (-g𝐺)
Assertion
Ref Expression
ogrpsublt ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → (𝑋 𝑍) < (𝑌 𝑍))

Proof of Theorem ogrpsublt
StepHypRef Expression
1 simp3 1061 . . . . 5 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → 𝑋 < 𝑌)
2 simp1 1059 . . . . . 6 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → 𝐺 ∈ oGrp)
3 simp21 1092 . . . . . 6 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → 𝑋𝐵)
4 simp22 1093 . . . . . 6 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → 𝑌𝐵)
5 eqid 2621 . . . . . . 7 (le‘𝐺) = (le‘𝐺)
6 ogrpsublt.1 . . . . . . 7 < = (lt‘𝐺)
75, 6pltval 16892 . . . . . 6 ((𝐺 ∈ oGrp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌 ↔ (𝑋(le‘𝐺)𝑌𝑋𝑌)))
82, 3, 4, 7syl3anc 1323 . . . . 5 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → (𝑋 < 𝑌 ↔ (𝑋(le‘𝐺)𝑌𝑋𝑌)))
91, 8mpbid 222 . . . 4 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → (𝑋(le‘𝐺)𝑌𝑋𝑌))
109simpld 475 . . 3 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → 𝑋(le‘𝐺)𝑌)
11 ogrpsublt.0 . . . 4 𝐵 = (Base‘𝐺)
12 ogrpsublt.2 . . . 4 = (-g𝐺)
1311, 5, 12ogrpsub 29526 . . 3 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋(le‘𝐺)𝑌) → (𝑋 𝑍)(le‘𝐺)(𝑌 𝑍))
1410, 13syld3an3 1368 . 2 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → (𝑋 𝑍)(le‘𝐺)(𝑌 𝑍))
159simprd 479 . . 3 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → 𝑋𝑌)
16 ogrpgrp 29512 . . . . . 6 (𝐺 ∈ oGrp → 𝐺 ∈ Grp)
172, 16syl 17 . . . . 5 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → 𝐺 ∈ Grp)
18 simp23 1094 . . . . 5 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → 𝑍𝐵)
1911, 12grpsubrcan 17428 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑍) = (𝑌 𝑍) ↔ 𝑋 = 𝑌))
2017, 3, 4, 18, 19syl13anc 1325 . . . 4 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → ((𝑋 𝑍) = (𝑌 𝑍) ↔ 𝑋 = 𝑌))
2120necon3bid 2834 . . 3 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → ((𝑋 𝑍) ≠ (𝑌 𝑍) ↔ 𝑋𝑌))
2215, 21mpbird 247 . 2 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → (𝑋 𝑍) ≠ (𝑌 𝑍))
2311, 12grpsubcl 17427 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑍𝐵) → (𝑋 𝑍) ∈ 𝐵)
2417, 3, 18, 23syl3anc 1323 . . 3 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → (𝑋 𝑍) ∈ 𝐵)
2511, 12grpsubcl 17427 . . . 4 ((𝐺 ∈ Grp ∧ 𝑌𝐵𝑍𝐵) → (𝑌 𝑍) ∈ 𝐵)
2617, 4, 18, 25syl3anc 1323 . . 3 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → (𝑌 𝑍) ∈ 𝐵)
275, 6pltval 16892 . . 3 ((𝐺 ∈ oGrp ∧ (𝑋 𝑍) ∈ 𝐵 ∧ (𝑌 𝑍) ∈ 𝐵) → ((𝑋 𝑍) < (𝑌 𝑍) ↔ ((𝑋 𝑍)(le‘𝐺)(𝑌 𝑍) ∧ (𝑋 𝑍) ≠ (𝑌 𝑍))))
282, 24, 26, 27syl3anc 1323 . 2 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → ((𝑋 𝑍) < (𝑌 𝑍) ↔ ((𝑋 𝑍)(le‘𝐺)(𝑌 𝑍) ∧ (𝑋 𝑍) ≠ (𝑌 𝑍))))
2914, 22, 28mpbir2and 956 1 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → (𝑋 𝑍) < (𝑌 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790   class class class wbr 4618  cfv 5852  (class class class)co 6610  Basecbs 15792  lecple 15880  ltcplt 16873  Grpcgrp 17354  -gcsg 17356  oGrpcogrp 29507
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-1st 7120  df-2nd 7121  df-0g 16034  df-plt 16890  df-mgm 17174  df-sgrp 17216  df-mnd 17227  df-grp 17357  df-minusg 17358  df-sbg 17359  df-omnd 29508  df-ogrp 29509
This theorem is referenced by:  archiabllem1a  29554  archiabllem2a  29557  archiabllem2c  29558
  Copyright terms: Public domain W3C validator