MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oismo Structured version   Visualization version   GIF version

Theorem oismo 8486
Description: When 𝐴 is a subclass of On, 𝐹 is a strictly monotone ordinal functions, and it is also complete (it is an isomorphism onto all of 𝐴). The proof avoids ax-rep 4804 (the second statement is trivial under ax-rep 4804). (Contributed by Mario Carneiro, 26-Jun-2015.)
Hypothesis
Ref Expression
oismo.1 𝐹 = OrdIso( E , 𝐴)
Assertion
Ref Expression
oismo (𝐴 ⊆ On → (Smo 𝐹 ∧ ran 𝐹 = 𝐴))

Proof of Theorem oismo
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 epweon 7025 . . . . . 6 E We On
2 wess 5130 . . . . . 6 (𝐴 ⊆ On → ( E We On → E We 𝐴))
31, 2mpi 20 . . . . 5 (𝐴 ⊆ On → E We 𝐴)
4 epse 5126 . . . . 5 E Se 𝐴
5 oismo.1 . . . . . 6 𝐹 = OrdIso( E , 𝐴)
65oiiso2 8477 . . . . 5 (( E We 𝐴 ∧ E Se 𝐴) → 𝐹 Isom E , E (dom 𝐹, ran 𝐹))
73, 4, 6sylancl 695 . . . 4 (𝐴 ⊆ On → 𝐹 Isom E , E (dom 𝐹, ran 𝐹))
85oicl 8475 . . . . 5 Ord dom 𝐹
95oif 8476 . . . . . . 7 𝐹:dom 𝐹𝐴
10 frn 6091 . . . . . . 7 (𝐹:dom 𝐹𝐴 → ran 𝐹𝐴)
119, 10ax-mp 5 . . . . . 6 ran 𝐹𝐴
12 id 22 . . . . . 6 (𝐴 ⊆ On → 𝐴 ⊆ On)
1311, 12syl5ss 3647 . . . . 5 (𝐴 ⊆ On → ran 𝐹 ⊆ On)
14 smoiso2 7511 . . . . 5 ((Ord dom 𝐹 ∧ ran 𝐹 ⊆ On) → ((𝐹:dom 𝐹onto→ran 𝐹 ∧ Smo 𝐹) ↔ 𝐹 Isom E , E (dom 𝐹, ran 𝐹)))
158, 13, 14sylancr 696 . . . 4 (𝐴 ⊆ On → ((𝐹:dom 𝐹onto→ran 𝐹 ∧ Smo 𝐹) ↔ 𝐹 Isom E , E (dom 𝐹, ran 𝐹)))
167, 15mpbird 247 . . 3 (𝐴 ⊆ On → (𝐹:dom 𝐹onto→ran 𝐹 ∧ Smo 𝐹))
1716simprd 478 . 2 (𝐴 ⊆ On → Smo 𝐹)
1811a1i 11 . . 3 (𝐴 ⊆ On → ran 𝐹𝐴)
19 simprl 809 . . . . . . . 8 ((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) → 𝑥𝐴)
203adantr 480 . . . . . . . . . 10 ((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) → E We 𝐴)
214a1i 11 . . . . . . . . . 10 ((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) → E Se 𝐴)
22 ffn 6083 . . . . . . . . . . . . 13 (𝐹:dom 𝐹𝐴𝐹 Fn dom 𝐹)
239, 22mp1i 13 . . . . . . . . . . . 12 ((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) → 𝐹 Fn dom 𝐹)
24 simplrr 818 . . . . . . . . . . . . . . 15 (((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) ∧ 𝑦 ∈ dom 𝐹) → ¬ 𝑥 ∈ ran 𝐹)
253ad2antrr 762 . . . . . . . . . . . . . . . . 17 (((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) ∧ 𝑦 ∈ dom 𝐹) → E We 𝐴)
264a1i 11 . . . . . . . . . . . . . . . . 17 (((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) ∧ 𝑦 ∈ dom 𝐹) → E Se 𝐴)
27 simplrl 817 . . . . . . . . . . . . . . . . 17 (((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) ∧ 𝑦 ∈ dom 𝐹) → 𝑥𝐴)
28 simpr 476 . . . . . . . . . . . . . . . . 17 (((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) ∧ 𝑦 ∈ dom 𝐹) → 𝑦 ∈ dom 𝐹)
295oiiniseg 8479 . . . . . . . . . . . . . . . . 17 ((( E We 𝐴 ∧ E Se 𝐴) ∧ (𝑥𝐴𝑦 ∈ dom 𝐹)) → ((𝐹𝑦) E 𝑥𝑥 ∈ ran 𝐹))
3025, 26, 27, 28, 29syl22anc 1367 . . . . . . . . . . . . . . . 16 (((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) ∧ 𝑦 ∈ dom 𝐹) → ((𝐹𝑦) E 𝑥𝑥 ∈ ran 𝐹))
3130ord 391 . . . . . . . . . . . . . . 15 (((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) ∧ 𝑦 ∈ dom 𝐹) → (¬ (𝐹𝑦) E 𝑥𝑥 ∈ ran 𝐹))
3224, 31mt3d 140 . . . . . . . . . . . . . 14 (((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) ∧ 𝑦 ∈ dom 𝐹) → (𝐹𝑦) E 𝑥)
33 vex 3234 . . . . . . . . . . . . . . 15 𝑥 ∈ V
3433epelc 5060 . . . . . . . . . . . . . 14 ((𝐹𝑦) E 𝑥 ↔ (𝐹𝑦) ∈ 𝑥)
3532, 34sylib 208 . . . . . . . . . . . . 13 (((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) ∧ 𝑦 ∈ dom 𝐹) → (𝐹𝑦) ∈ 𝑥)
3635ralrimiva 2995 . . . . . . . . . . . 12 ((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) → ∀𝑦 ∈ dom 𝐹(𝐹𝑦) ∈ 𝑥)
37 ffnfv 6428 . . . . . . . . . . . 12 (𝐹:dom 𝐹𝑥 ↔ (𝐹 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝐹𝑦) ∈ 𝑥))
3823, 36, 37sylanbrc 699 . . . . . . . . . . 11 ((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) → 𝐹:dom 𝐹𝑥)
399, 22mp1i 13 . . . . . . . . . . . . . . . 16 (((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) ∧ 𝑦 ∈ dom 𝐹) → 𝐹 Fn dom 𝐹)
4017ad2antrr 762 . . . . . . . . . . . . . . . 16 (((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) ∧ 𝑦 ∈ dom 𝐹) → Smo 𝐹)
41 smogt 7509 . . . . . . . . . . . . . . . 16 ((𝐹 Fn dom 𝐹 ∧ Smo 𝐹𝑦 ∈ dom 𝐹) → 𝑦 ⊆ (𝐹𝑦))
4239, 40, 28, 41syl3anc 1366 . . . . . . . . . . . . . . 15 (((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) ∧ 𝑦 ∈ dom 𝐹) → 𝑦 ⊆ (𝐹𝑦))
43 ordelon 5785 . . . . . . . . . . . . . . . . 17 ((Ord dom 𝐹𝑦 ∈ dom 𝐹) → 𝑦 ∈ On)
448, 28, 43sylancr 696 . . . . . . . . . . . . . . . 16 (((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) ∧ 𝑦 ∈ dom 𝐹) → 𝑦 ∈ On)
45 simpll 805 . . . . . . . . . . . . . . . . 17 (((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) ∧ 𝑦 ∈ dom 𝐹) → 𝐴 ⊆ On)
4645, 27sseldd 3637 . . . . . . . . . . . . . . . 16 (((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) ∧ 𝑦 ∈ dom 𝐹) → 𝑥 ∈ On)
47 ontr2 5810 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ On ∧ 𝑥 ∈ On) → ((𝑦 ⊆ (𝐹𝑦) ∧ (𝐹𝑦) ∈ 𝑥) → 𝑦𝑥))
4844, 46, 47syl2anc 694 . . . . . . . . . . . . . . 15 (((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) ∧ 𝑦 ∈ dom 𝐹) → ((𝑦 ⊆ (𝐹𝑦) ∧ (𝐹𝑦) ∈ 𝑥) → 𝑦𝑥))
4942, 35, 48mp2and 715 . . . . . . . . . . . . . 14 (((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) ∧ 𝑦 ∈ dom 𝐹) → 𝑦𝑥)
5049ex 449 . . . . . . . . . . . . 13 ((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) → (𝑦 ∈ dom 𝐹𝑦𝑥))
5150ssrdv 3642 . . . . . . . . . . . 12 ((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) → dom 𝐹𝑥)
5219, 51ssexd 4838 . . . . . . . . . . 11 ((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) → dom 𝐹 ∈ V)
53 fex2 7163 . . . . . . . . . . 11 ((𝐹:dom 𝐹𝑥 ∧ dom 𝐹 ∈ V ∧ 𝑥𝐴) → 𝐹 ∈ V)
5438, 52, 19, 53syl3anc 1366 . . . . . . . . . 10 ((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) → 𝐹 ∈ V)
555ordtype2 8480 . . . . . . . . . 10 (( E We 𝐴 ∧ E Se 𝐴𝐹 ∈ V) → 𝐹 Isom E , E (dom 𝐹, 𝐴))
5620, 21, 54, 55syl3anc 1366 . . . . . . . . 9 ((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) → 𝐹 Isom E , E (dom 𝐹, 𝐴))
57 isof1o 6613 . . . . . . . . 9 (𝐹 Isom E , E (dom 𝐹, 𝐴) → 𝐹:dom 𝐹1-1-onto𝐴)
58 f1ofo 6182 . . . . . . . . 9 (𝐹:dom 𝐹1-1-onto𝐴𝐹:dom 𝐹onto𝐴)
59 forn 6156 . . . . . . . . 9 (𝐹:dom 𝐹onto𝐴 → ran 𝐹 = 𝐴)
6056, 57, 58, 594syl 19 . . . . . . . 8 ((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) → ran 𝐹 = 𝐴)
6119, 60eleqtrrd 2733 . . . . . . 7 ((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) → 𝑥 ∈ ran 𝐹)
6261expr 642 . . . . . 6 ((𝐴 ⊆ On ∧ 𝑥𝐴) → (¬ 𝑥 ∈ ran 𝐹𝑥 ∈ ran 𝐹))
6362pm2.18d 124 . . . . 5 ((𝐴 ⊆ On ∧ 𝑥𝐴) → 𝑥 ∈ ran 𝐹)
6463ex 449 . . . 4 (𝐴 ⊆ On → (𝑥𝐴𝑥 ∈ ran 𝐹))
6564ssrdv 3642 . . 3 (𝐴 ⊆ On → 𝐴 ⊆ ran 𝐹)
6618, 65eqssd 3653 . 2 (𝐴 ⊆ On → ran 𝐹 = 𝐴)
6717, 66jca 553 1 (𝐴 ⊆ On → (Smo 𝐹 ∧ ran 𝐹 = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383   = wceq 1523  wcel 2030  wral 2941  Vcvv 3231  wss 3607   class class class wbr 4685   E cep 5057   Se wse 5100   We wwe 5101  dom cdm 5143  ran crn 5144  Ord word 5760  Oncon0 5761   Fn wfn 5921  wf 5922  ontowfo 5924  1-1-ontowf1o 5925  cfv 5926   Isom wiso 5927  Smo wsmo 7487  OrdIsocoi 8455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-wrecs 7452  df-smo 7488  df-recs 7513  df-oi 8456
This theorem is referenced by:  oiid  8487  hsmexlem1  9286  hsmexlem2  9287
  Copyright terms: Public domain W3C validator