Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  oismo Structured version   Visualization version   GIF version

Theorem oismo 8390
 Description: When 𝐴 is a subclass of On, 𝐹 is a strictly monotone ordinal functions, and it is also complete (it is an isomorphism onto all of 𝐴). The proof avoids ax-rep 4736 (the second statement is trivial under ax-rep 4736). (Contributed by Mario Carneiro, 26-Jun-2015.)
Hypothesis
Ref Expression
oismo.1 𝐹 = OrdIso( E , 𝐴)
Assertion
Ref Expression
oismo (𝐴 ⊆ On → (Smo 𝐹 ∧ ran 𝐹 = 𝐴))

Proof of Theorem oismo
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 epweon 6931 . . . . . 6 E We On
2 wess 5066 . . . . . 6 (𝐴 ⊆ On → ( E We On → E We 𝐴))
31, 2mpi 20 . . . . 5 (𝐴 ⊆ On → E We 𝐴)
4 epse 5062 . . . . 5 E Se 𝐴
5 oismo.1 . . . . . 6 𝐹 = OrdIso( E , 𝐴)
65oiiso2 8381 . . . . 5 (( E We 𝐴 ∧ E Se 𝐴) → 𝐹 Isom E , E (dom 𝐹, ran 𝐹))
73, 4, 6sylancl 693 . . . 4 (𝐴 ⊆ On → 𝐹 Isom E , E (dom 𝐹, ran 𝐹))
85oicl 8379 . . . . 5 Ord dom 𝐹
95oif 8380 . . . . . . 7 𝐹:dom 𝐹𝐴
10 frn 6012 . . . . . . 7 (𝐹:dom 𝐹𝐴 → ran 𝐹𝐴)
119, 10ax-mp 5 . . . . . 6 ran 𝐹𝐴
12 id 22 . . . . . 6 (𝐴 ⊆ On → 𝐴 ⊆ On)
1311, 12syl5ss 3599 . . . . 5 (𝐴 ⊆ On → ran 𝐹 ⊆ On)
14 smoiso2 7412 . . . . 5 ((Ord dom 𝐹 ∧ ran 𝐹 ⊆ On) → ((𝐹:dom 𝐹onto→ran 𝐹 ∧ Smo 𝐹) ↔ 𝐹 Isom E , E (dom 𝐹, ran 𝐹)))
158, 13, 14sylancr 694 . . . 4 (𝐴 ⊆ On → ((𝐹:dom 𝐹onto→ran 𝐹 ∧ Smo 𝐹) ↔ 𝐹 Isom E , E (dom 𝐹, ran 𝐹)))
167, 15mpbird 247 . . 3 (𝐴 ⊆ On → (𝐹:dom 𝐹onto→ran 𝐹 ∧ Smo 𝐹))
1716simprd 479 . 2 (𝐴 ⊆ On → Smo 𝐹)
1811a1i 11 . . 3 (𝐴 ⊆ On → ran 𝐹𝐴)
19 simprl 793 . . . . . . . 8 ((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) → 𝑥𝐴)
203adantr 481 . . . . . . . . . 10 ((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) → E We 𝐴)
214a1i 11 . . . . . . . . . 10 ((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) → E Se 𝐴)
22 ffn 6004 . . . . . . . . . . . . 13 (𝐹:dom 𝐹𝐴𝐹 Fn dom 𝐹)
239, 22mp1i 13 . . . . . . . . . . . 12 ((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) → 𝐹 Fn dom 𝐹)
24 simplrr 800 . . . . . . . . . . . . . . 15 (((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) ∧ 𝑦 ∈ dom 𝐹) → ¬ 𝑥 ∈ ran 𝐹)
253ad2antrr 761 . . . . . . . . . . . . . . . . 17 (((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) ∧ 𝑦 ∈ dom 𝐹) → E We 𝐴)
264a1i 11 . . . . . . . . . . . . . . . . 17 (((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) ∧ 𝑦 ∈ dom 𝐹) → E Se 𝐴)
27 simplrl 799 . . . . . . . . . . . . . . . . 17 (((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) ∧ 𝑦 ∈ dom 𝐹) → 𝑥𝐴)
28 simpr 477 . . . . . . . . . . . . . . . . 17 (((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) ∧ 𝑦 ∈ dom 𝐹) → 𝑦 ∈ dom 𝐹)
295oiiniseg 8383 . . . . . . . . . . . . . . . . 17 ((( E We 𝐴 ∧ E Se 𝐴) ∧ (𝑥𝐴𝑦 ∈ dom 𝐹)) → ((𝐹𝑦) E 𝑥𝑥 ∈ ran 𝐹))
3025, 26, 27, 28, 29syl22anc 1324 . . . . . . . . . . . . . . . 16 (((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) ∧ 𝑦 ∈ dom 𝐹) → ((𝐹𝑦) E 𝑥𝑥 ∈ ran 𝐹))
3130ord 392 . . . . . . . . . . . . . . 15 (((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) ∧ 𝑦 ∈ dom 𝐹) → (¬ (𝐹𝑦) E 𝑥𝑥 ∈ ran 𝐹))
3224, 31mt3d 140 . . . . . . . . . . . . . 14 (((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) ∧ 𝑦 ∈ dom 𝐹) → (𝐹𝑦) E 𝑥)
33 vex 3194 . . . . . . . . . . . . . . 15 𝑥 ∈ V
3433epelc 4992 . . . . . . . . . . . . . 14 ((𝐹𝑦) E 𝑥 ↔ (𝐹𝑦) ∈ 𝑥)
3532, 34sylib 208 . . . . . . . . . . . . 13 (((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) ∧ 𝑦 ∈ dom 𝐹) → (𝐹𝑦) ∈ 𝑥)
3635ralrimiva 2965 . . . . . . . . . . . 12 ((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) → ∀𝑦 ∈ dom 𝐹(𝐹𝑦) ∈ 𝑥)
37 ffnfv 6344 . . . . . . . . . . . 12 (𝐹:dom 𝐹𝑥 ↔ (𝐹 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝐹𝑦) ∈ 𝑥))
3823, 36, 37sylanbrc 697 . . . . . . . . . . 11 ((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) → 𝐹:dom 𝐹𝑥)
399, 22mp1i 13 . . . . . . . . . . . . . . . 16 (((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) ∧ 𝑦 ∈ dom 𝐹) → 𝐹 Fn dom 𝐹)
4017ad2antrr 761 . . . . . . . . . . . . . . . 16 (((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) ∧ 𝑦 ∈ dom 𝐹) → Smo 𝐹)
41 smogt 7410 . . . . . . . . . . . . . . . 16 ((𝐹 Fn dom 𝐹 ∧ Smo 𝐹𝑦 ∈ dom 𝐹) → 𝑦 ⊆ (𝐹𝑦))
4239, 40, 28, 41syl3anc 1323 . . . . . . . . . . . . . . 15 (((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) ∧ 𝑦 ∈ dom 𝐹) → 𝑦 ⊆ (𝐹𝑦))
43 ordelon 5709 . . . . . . . . . . . . . . . . 17 ((Ord dom 𝐹𝑦 ∈ dom 𝐹) → 𝑦 ∈ On)
448, 28, 43sylancr 694 . . . . . . . . . . . . . . . 16 (((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) ∧ 𝑦 ∈ dom 𝐹) → 𝑦 ∈ On)
45 simpll 789 . . . . . . . . . . . . . . . . 17 (((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) ∧ 𝑦 ∈ dom 𝐹) → 𝐴 ⊆ On)
4645, 27sseldd 3589 . . . . . . . . . . . . . . . 16 (((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) ∧ 𝑦 ∈ dom 𝐹) → 𝑥 ∈ On)
47 ontr2 5734 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ On ∧ 𝑥 ∈ On) → ((𝑦 ⊆ (𝐹𝑦) ∧ (𝐹𝑦) ∈ 𝑥) → 𝑦𝑥))
4844, 46, 47syl2anc 692 . . . . . . . . . . . . . . 15 (((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) ∧ 𝑦 ∈ dom 𝐹) → ((𝑦 ⊆ (𝐹𝑦) ∧ (𝐹𝑦) ∈ 𝑥) → 𝑦𝑥))
4942, 35, 48mp2and 714 . . . . . . . . . . . . . 14 (((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) ∧ 𝑦 ∈ dom 𝐹) → 𝑦𝑥)
5049ex 450 . . . . . . . . . . . . 13 ((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) → (𝑦 ∈ dom 𝐹𝑦𝑥))
5150ssrdv 3594 . . . . . . . . . . . 12 ((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) → dom 𝐹𝑥)
5219, 51ssexd 4770 . . . . . . . . . . 11 ((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) → dom 𝐹 ∈ V)
53 fex2 7071 . . . . . . . . . . 11 ((𝐹:dom 𝐹𝑥 ∧ dom 𝐹 ∈ V ∧ 𝑥𝐴) → 𝐹 ∈ V)
5438, 52, 19, 53syl3anc 1323 . . . . . . . . . 10 ((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) → 𝐹 ∈ V)
555ordtype2 8384 . . . . . . . . . 10 (( E We 𝐴 ∧ E Se 𝐴𝐹 ∈ V) → 𝐹 Isom E , E (dom 𝐹, 𝐴))
5620, 21, 54, 55syl3anc 1323 . . . . . . . . 9 ((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) → 𝐹 Isom E , E (dom 𝐹, 𝐴))
57 isof1o 6528 . . . . . . . . 9 (𝐹 Isom E , E (dom 𝐹, 𝐴) → 𝐹:dom 𝐹1-1-onto𝐴)
58 f1ofo 6103 . . . . . . . . 9 (𝐹:dom 𝐹1-1-onto𝐴𝐹:dom 𝐹onto𝐴)
59 forn 6077 . . . . . . . . 9 (𝐹:dom 𝐹onto𝐴 → ran 𝐹 = 𝐴)
6056, 57, 58, 594syl 19 . . . . . . . 8 ((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) → ran 𝐹 = 𝐴)
6119, 60eleqtrrd 2707 . . . . . . 7 ((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) → 𝑥 ∈ ran 𝐹)
6261expr 642 . . . . . 6 ((𝐴 ⊆ On ∧ 𝑥𝐴) → (¬ 𝑥 ∈ ran 𝐹𝑥 ∈ ran 𝐹))
6362pm2.18d 124 . . . . 5 ((𝐴 ⊆ On ∧ 𝑥𝐴) → 𝑥 ∈ ran 𝐹)
6463ex 450 . . . 4 (𝐴 ⊆ On → (𝑥𝐴𝑥 ∈ ran 𝐹))
6564ssrdv 3594 . . 3 (𝐴 ⊆ On → 𝐴 ⊆ ran 𝐹)
6618, 65eqssd 3605 . 2 (𝐴 ⊆ On → ran 𝐹 = 𝐴)
6717, 66jca 554 1 (𝐴 ⊆ On → (Smo 𝐹 ∧ ran 𝐹 = 𝐴))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∨ wo 383   ∧ wa 384   = wceq 1480   ∈ wcel 1992  ∀wral 2912  Vcvv 3191   ⊆ wss 3560   class class class wbr 4618   E cep 4988   Se wse 5036   We wwe 5037  dom cdm 5079  ran crn 5080  Ord word 5684  Oncon0 5685   Fn wfn 5845  ⟶wf 5846  –onto→wfo 5848  –1-1-onto→wf1o 5849  ‘cfv 5850   Isom wiso 5851  Smo wsmo 7388  OrdIsocoi 8359 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-isom 5859  df-riota 6566  df-wrecs 7353  df-smo 7389  df-recs 7414  df-oi 8360 This theorem is referenced by:  oiid  8391  hsmexlem1  9193  hsmexlem2  9194
 Copyright terms: Public domain W3C validator