Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oldmj1 Structured version   Visualization version   GIF version

Theorem oldmj1 34826
Description: De Morgan's law for join in an ortholattice. (chdmj1 28516 analog.) (Contributed by NM, 6-Nov-2011.)
Hypotheses
Ref Expression
oldmm1.b 𝐵 = (Base‘𝐾)
oldmm1.j = (join‘𝐾)
oldmm1.m = (meet‘𝐾)
oldmm1.o = (oc‘𝐾)
Assertion
Ref Expression
oldmj1 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( ‘(𝑋 𝑌)) = (( 𝑋) ( 𝑌)))

Proof of Theorem oldmj1
StepHypRef Expression
1 oldmm1.b . . . 4 𝐵 = (Base‘𝐾)
2 oldmm1.j . . . 4 = (join‘𝐾)
3 oldmm1.m . . . 4 = (meet‘𝐾)
4 oldmm1.o . . . 4 = (oc‘𝐾)
51, 2, 3, 4oldmm4 34825 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( ‘(( 𝑋) ( 𝑌))) = (𝑋 𝑌))
65fveq2d 6233 . 2 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( ‘( ‘(( 𝑋) ( 𝑌)))) = ( ‘(𝑋 𝑌)))
7 olop 34819 . . . 4 (𝐾 ∈ OL → 𝐾 ∈ OP)
873ad2ant1 1102 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ OP)
9 ollat 34818 . . . . 5 (𝐾 ∈ OL → 𝐾 ∈ Lat)
1093ad2ant1 1102 . . . 4 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ Lat)
111, 4opoccl 34799 . . . . . 6 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ( 𝑋) ∈ 𝐵)
127, 11sylan 487 . . . . 5 ((𝐾 ∈ OL ∧ 𝑋𝐵) → ( 𝑋) ∈ 𝐵)
13123adant3 1101 . . . 4 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( 𝑋) ∈ 𝐵)
141, 4opoccl 34799 . . . . . 6 ((𝐾 ∈ OP ∧ 𝑌𝐵) → ( 𝑌) ∈ 𝐵)
157, 14sylan 487 . . . . 5 ((𝐾 ∈ OL ∧ 𝑌𝐵) → ( 𝑌) ∈ 𝐵)
16153adant2 1100 . . . 4 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( 𝑌) ∈ 𝐵)
171, 3latmcl 17099 . . . 4 ((𝐾 ∈ Lat ∧ ( 𝑋) ∈ 𝐵 ∧ ( 𝑌) ∈ 𝐵) → (( 𝑋) ( 𝑌)) ∈ 𝐵)
1810, 13, 16, 17syl3anc 1366 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → (( 𝑋) ( 𝑌)) ∈ 𝐵)
191, 4opococ 34800 . . 3 ((𝐾 ∈ OP ∧ (( 𝑋) ( 𝑌)) ∈ 𝐵) → ( ‘( ‘(( 𝑋) ( 𝑌)))) = (( 𝑋) ( 𝑌)))
208, 18, 19syl2anc 694 . 2 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( ‘( ‘(( 𝑋) ( 𝑌)))) = (( 𝑋) ( 𝑌)))
216, 20eqtr3d 2687 1 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( ‘(𝑋 𝑌)) = (( 𝑋) ( 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1054   = wceq 1523  wcel 2030  cfv 5926  (class class class)co 6690  Basecbs 15904  occoc 15996  joincjn 16991  meetcmee 16992  Latclat 17092  OPcops 34777  OLcol 34779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-preset 16975  df-poset 16993  df-lub 17021  df-glb 17022  df-join 17023  df-meet 17024  df-lat 17093  df-oposet 34781  df-ol 34783
This theorem is referenced by:  oldmj2  34827  oldmj3  34828  cmtbr2N  34858  omlfh1N  34863  omlfh3N  34864  cvrexch  35024  poldmj1N  35532  lhpmod2i2  35642  lhpmod6i1  35643  djajN  36743
  Copyright terms: Public domain W3C validator