Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oldmm1 Structured version   Visualization version   GIF version

Theorem oldmm1 36357
Description: De Morgan's law for meet in an ortholattice. (chdmm1 29305 analog.) (Contributed by NM, 6-Nov-2011.)
Hypotheses
Ref Expression
oldmm1.b 𝐵 = (Base‘𝐾)
oldmm1.j = (join‘𝐾)
oldmm1.m = (meet‘𝐾)
oldmm1.o = (oc‘𝐾)
Assertion
Ref Expression
oldmm1 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( ‘(𝑋 𝑌)) = (( 𝑋) ( 𝑌)))

Proof of Theorem oldmm1
StepHypRef Expression
1 oldmm1.b . 2 𝐵 = (Base‘𝐾)
2 eqid 2824 . 2 (le‘𝐾) = (le‘𝐾)
3 ollat 36353 . . 3 (𝐾 ∈ OL → 𝐾 ∈ Lat)
433ad2ant1 1129 . 2 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ Lat)
5 olop 36354 . . . 4 (𝐾 ∈ OL → 𝐾 ∈ OP)
653ad2ant1 1129 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ OP)
7 oldmm1.m . . . . 5 = (meet‘𝐾)
81, 7latmcl 17665 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
93, 8syl3an1 1159 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
10 oldmm1.o . . . 4 = (oc‘𝐾)
111, 10opoccl 36334 . . 3 ((𝐾 ∈ OP ∧ (𝑋 𝑌) ∈ 𝐵) → ( ‘(𝑋 𝑌)) ∈ 𝐵)
126, 9, 11syl2anc 586 . 2 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( ‘(𝑋 𝑌)) ∈ 𝐵)
131, 10opoccl 36334 . . . . 5 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ( 𝑋) ∈ 𝐵)
145, 13sylan 582 . . . 4 ((𝐾 ∈ OL ∧ 𝑋𝐵) → ( 𝑋) ∈ 𝐵)
15143adant3 1128 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( 𝑋) ∈ 𝐵)
161, 10opoccl 36334 . . . . 5 ((𝐾 ∈ OP ∧ 𝑌𝐵) → ( 𝑌) ∈ 𝐵)
175, 16sylan 582 . . . 4 ((𝐾 ∈ OL ∧ 𝑌𝐵) → ( 𝑌) ∈ 𝐵)
18173adant2 1127 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( 𝑌) ∈ 𝐵)
19 oldmm1.j . . . 4 = (join‘𝐾)
201, 19latjcl 17664 . . 3 ((𝐾 ∈ Lat ∧ ( 𝑋) ∈ 𝐵 ∧ ( 𝑌) ∈ 𝐵) → (( 𝑋) ( 𝑌)) ∈ 𝐵)
214, 15, 18, 20syl3anc 1367 . 2 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → (( 𝑋) ( 𝑌)) ∈ 𝐵)
221, 2, 19latlej1 17673 . . . . . 6 ((𝐾 ∈ Lat ∧ ( 𝑋) ∈ 𝐵 ∧ ( 𝑌) ∈ 𝐵) → ( 𝑋)(le‘𝐾)(( 𝑋) ( 𝑌)))
234, 15, 18, 22syl3anc 1367 . . . . 5 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( 𝑋)(le‘𝐾)(( 𝑋) ( 𝑌)))
24 simp2 1133 . . . . . 6 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
251, 2, 10oplecon1b 36341 . . . . . 6 ((𝐾 ∈ OP ∧ 𝑋𝐵 ∧ (( 𝑋) ( 𝑌)) ∈ 𝐵) → (( 𝑋)(le‘𝐾)(( 𝑋) ( 𝑌)) ↔ ( ‘(( 𝑋) ( 𝑌)))(le‘𝐾)𝑋))
266, 24, 21, 25syl3anc 1367 . . . . 5 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → (( 𝑋)(le‘𝐾)(( 𝑋) ( 𝑌)) ↔ ( ‘(( 𝑋) ( 𝑌)))(le‘𝐾)𝑋))
2723, 26mpbid 234 . . . 4 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( ‘(( 𝑋) ( 𝑌)))(le‘𝐾)𝑋)
281, 2, 19latlej2 17674 . . . . . 6 ((𝐾 ∈ Lat ∧ ( 𝑋) ∈ 𝐵 ∧ ( 𝑌) ∈ 𝐵) → ( 𝑌)(le‘𝐾)(( 𝑋) ( 𝑌)))
294, 15, 18, 28syl3anc 1367 . . . . 5 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( 𝑌)(le‘𝐾)(( 𝑋) ( 𝑌)))
30 simp3 1134 . . . . . 6 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
311, 2, 10oplecon1b 36341 . . . . . 6 ((𝐾 ∈ OP ∧ 𝑌𝐵 ∧ (( 𝑋) ( 𝑌)) ∈ 𝐵) → (( 𝑌)(le‘𝐾)(( 𝑋) ( 𝑌)) ↔ ( ‘(( 𝑋) ( 𝑌)))(le‘𝐾)𝑌))
326, 30, 21, 31syl3anc 1367 . . . . 5 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → (( 𝑌)(le‘𝐾)(( 𝑋) ( 𝑌)) ↔ ( ‘(( 𝑋) ( 𝑌)))(le‘𝐾)𝑌))
3329, 32mpbid 234 . . . 4 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( ‘(( 𝑋) ( 𝑌)))(le‘𝐾)𝑌)
341, 10opoccl 36334 . . . . . 6 ((𝐾 ∈ OP ∧ (( 𝑋) ( 𝑌)) ∈ 𝐵) → ( ‘(( 𝑋) ( 𝑌))) ∈ 𝐵)
356, 21, 34syl2anc 586 . . . . 5 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( ‘(( 𝑋) ( 𝑌))) ∈ 𝐵)
361, 2, 7latlem12 17691 . . . . 5 ((𝐾 ∈ Lat ∧ (( ‘(( 𝑋) ( 𝑌))) ∈ 𝐵𝑋𝐵𝑌𝐵)) → ((( ‘(( 𝑋) ( 𝑌)))(le‘𝐾)𝑋 ∧ ( ‘(( 𝑋) ( 𝑌)))(le‘𝐾)𝑌) ↔ ( ‘(( 𝑋) ( 𝑌)))(le‘𝐾)(𝑋 𝑌)))
374, 35, 24, 30, 36syl13anc 1368 . . . 4 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ((( ‘(( 𝑋) ( 𝑌)))(le‘𝐾)𝑋 ∧ ( ‘(( 𝑋) ( 𝑌)))(le‘𝐾)𝑌) ↔ ( ‘(( 𝑋) ( 𝑌)))(le‘𝐾)(𝑋 𝑌)))
3827, 33, 37mpbi2and 710 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( ‘(( 𝑋) ( 𝑌)))(le‘𝐾)(𝑋 𝑌))
391, 2, 10oplecon1b 36341 . . . 4 ((𝐾 ∈ OP ∧ (( 𝑋) ( 𝑌)) ∈ 𝐵 ∧ (𝑋 𝑌) ∈ 𝐵) → (( ‘(( 𝑋) ( 𝑌)))(le‘𝐾)(𝑋 𝑌) ↔ ( ‘(𝑋 𝑌))(le‘𝐾)(( 𝑋) ( 𝑌))))
406, 21, 9, 39syl3anc 1367 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → (( ‘(( 𝑋) ( 𝑌)))(le‘𝐾)(𝑋 𝑌) ↔ ( ‘(𝑋 𝑌))(le‘𝐾)(( 𝑋) ( 𝑌))))
4138, 40mpbid 234 . 2 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( ‘(𝑋 𝑌))(le‘𝐾)(( 𝑋) ( 𝑌)))
421, 2, 7latmle1 17689 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌)(le‘𝐾)𝑋)
433, 42syl3an1 1159 . . . 4 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌)(le‘𝐾)𝑋)
441, 2, 10oplecon3b 36340 . . . . 5 ((𝐾 ∈ OP ∧ (𝑋 𝑌) ∈ 𝐵𝑋𝐵) → ((𝑋 𝑌)(le‘𝐾)𝑋 ↔ ( 𝑋)(le‘𝐾)( ‘(𝑋 𝑌))))
456, 9, 24, 44syl3anc 1367 . . . 4 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌)(le‘𝐾)𝑋 ↔ ( 𝑋)(le‘𝐾)( ‘(𝑋 𝑌))))
4643, 45mpbid 234 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( 𝑋)(le‘𝐾)( ‘(𝑋 𝑌)))
471, 2, 7latmle2 17690 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌)(le‘𝐾)𝑌)
483, 47syl3an1 1159 . . . 4 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌)(le‘𝐾)𝑌)
491, 2, 10oplecon3b 36340 . . . . 5 ((𝐾 ∈ OP ∧ (𝑋 𝑌) ∈ 𝐵𝑌𝐵) → ((𝑋 𝑌)(le‘𝐾)𝑌 ↔ ( 𝑌)(le‘𝐾)( ‘(𝑋 𝑌))))
506, 9, 30, 49syl3anc 1367 . . . 4 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌)(le‘𝐾)𝑌 ↔ ( 𝑌)(le‘𝐾)( ‘(𝑋 𝑌))))
5148, 50mpbid 234 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( 𝑌)(le‘𝐾)( ‘(𝑋 𝑌)))
521, 2, 19latjle12 17675 . . . 4 ((𝐾 ∈ Lat ∧ (( 𝑋) ∈ 𝐵 ∧ ( 𝑌) ∈ 𝐵 ∧ ( ‘(𝑋 𝑌)) ∈ 𝐵)) → ((( 𝑋)(le‘𝐾)( ‘(𝑋 𝑌)) ∧ ( 𝑌)(le‘𝐾)( ‘(𝑋 𝑌))) ↔ (( 𝑋) ( 𝑌))(le‘𝐾)( ‘(𝑋 𝑌))))
534, 15, 18, 12, 52syl13anc 1368 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ((( 𝑋)(le‘𝐾)( ‘(𝑋 𝑌)) ∧ ( 𝑌)(le‘𝐾)( ‘(𝑋 𝑌))) ↔ (( 𝑋) ( 𝑌))(le‘𝐾)( ‘(𝑋 𝑌))))
5446, 51, 53mpbi2and 710 . 2 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → (( 𝑋) ( 𝑌))(le‘𝐾)( ‘(𝑋 𝑌)))
551, 2, 4, 12, 21, 41, 54latasymd 17670 1 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( ‘(𝑋 𝑌)) = (( 𝑋) ( 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1536  wcel 2113   class class class wbr 5069  cfv 6358  (class class class)co 7159  Basecbs 16486  lecple 16575  occoc 16576  joincjn 17557  meetcmee 17558  Latclat 17658  OPcops 36312  OLcol 36314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-proset 17541  df-poset 17559  df-lub 17587  df-glb 17588  df-join 17589  df-meet 17590  df-lat 17659  df-oposet 36316  df-ol 36318
This theorem is referenced by:  oldmm2  36358  oldmm3N  36359  cmtcomlemN  36388  cmtbr2N  36393  omlfh1N  36398  cvrexch  36560  lhpmod2i2  37178  lhpmod6i1  37179  doca2N  38266  djajN  38277
  Copyright terms: Public domain W3C validator