Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  olj01 Structured version   Visualization version   GIF version

Theorem olj01 33992
Description: An ortholattice element joined with zero equals itself. (chj0 28205 analog.) (Contributed by NM, 19-Oct-2011.)
Hypotheses
Ref Expression
olj0.b 𝐵 = (Base‘𝐾)
olj0.j = (join‘𝐾)
olj0.z 0 = (0.‘𝐾)
Assertion
Ref Expression
olj01 ((𝐾 ∈ OL ∧ 𝑋𝐵) → (𝑋 0 ) = 𝑋)

Proof of Theorem olj01
StepHypRef Expression
1 olop 33981 . . . 4 (𝐾 ∈ OL → 𝐾 ∈ OP)
2 olj0.b . . . . 5 𝐵 = (Base‘𝐾)
3 olj0.z . . . . 5 0 = (0.‘𝐾)
42, 3op0cl 33951 . . . 4 (𝐾 ∈ OP → 0𝐵)
51, 4syl 17 . . 3 (𝐾 ∈ OL → 0𝐵)
65adantr 481 . 2 ((𝐾 ∈ OL ∧ 𝑋𝐵) → 0𝐵)
7 eqid 2621 . . 3 (le‘𝐾) = (le‘𝐾)
8 ollat 33980 . . . 4 (𝐾 ∈ OL → 𝐾 ∈ Lat)
983ad2ant1 1080 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵0𝐵) → 𝐾 ∈ Lat)
10 olj0.j . . . . 5 = (join‘𝐾)
112, 10latjcl 16972 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵0𝐵) → (𝑋 0 ) ∈ 𝐵)
128, 11syl3an1 1356 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵0𝐵) → (𝑋 0 ) ∈ 𝐵)
13 simp2 1060 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵0𝐵) → 𝑋𝐵)
142, 7latref 16974 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → 𝑋(le‘𝐾)𝑋)
158, 14sylan 488 . . . . 5 ((𝐾 ∈ OL ∧ 𝑋𝐵) → 𝑋(le‘𝐾)𝑋)
16153adant3 1079 . . . 4 ((𝐾 ∈ OL ∧ 𝑋𝐵0𝐵) → 𝑋(le‘𝐾)𝑋)
172, 7, 3op0le 33953 . . . . . 6 ((𝐾 ∈ OP ∧ 𝑋𝐵) → 0 (le‘𝐾)𝑋)
181, 17sylan 488 . . . . 5 ((𝐾 ∈ OL ∧ 𝑋𝐵) → 0 (le‘𝐾)𝑋)
19183adant3 1079 . . . 4 ((𝐾 ∈ OL ∧ 𝑋𝐵0𝐵) → 0 (le‘𝐾)𝑋)
20 simp3 1061 . . . . 5 ((𝐾 ∈ OL ∧ 𝑋𝐵0𝐵) → 0𝐵)
212, 7, 10latjle12 16983 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋𝐵0𝐵𝑋𝐵)) → ((𝑋(le‘𝐾)𝑋0 (le‘𝐾)𝑋) ↔ (𝑋 0 )(le‘𝐾)𝑋))
229, 13, 20, 13, 21syl13anc 1325 . . . 4 ((𝐾 ∈ OL ∧ 𝑋𝐵0𝐵) → ((𝑋(le‘𝐾)𝑋0 (le‘𝐾)𝑋) ↔ (𝑋 0 )(le‘𝐾)𝑋))
2316, 19, 22mpbi2and 955 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵0𝐵) → (𝑋 0 )(le‘𝐾)𝑋)
242, 7, 10latlej1 16981 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵0𝐵) → 𝑋(le‘𝐾)(𝑋 0 ))
258, 24syl3an1 1356 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵0𝐵) → 𝑋(le‘𝐾)(𝑋 0 ))
262, 7, 9, 12, 13, 23, 25latasymd 16978 . 2 ((𝐾 ∈ OL ∧ 𝑋𝐵0𝐵) → (𝑋 0 ) = 𝑋)
276, 26mpd3an3 1422 1 ((𝐾 ∈ OL ∧ 𝑋𝐵) → (𝑋 0 ) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987   class class class wbr 4613  cfv 5847  (class class class)co 6604  Basecbs 15781  lecple 15869  joincjn 16865  0.cp0 16958  Latclat 16966  OPcops 33939  OLcol 33941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-preset 16849  df-poset 16867  df-lub 16895  df-glb 16896  df-join 16897  df-meet 16898  df-p0 16960  df-lat 16967  df-oposet 33943  df-ol 33945
This theorem is referenced by:  olj02  33993  olm11  33994  omllaw3  34012  omlspjN  34028  2at0mat0  34291  lhp2at0nle  34801  lhple  34808  cdlemc6  34963  cdleme3c  34997  cdleme7e  35014  cdlemednpq  35066  cdlemefrs29pre00  35163  cdlemefrs29bpre0  35164  cdlemefrs29cpre1  35166  cdleme32fva  35205  cdleme42ke  35253  cdlemg12e  35415  cdlemg31d  35468  trljco  35508  cdlemkid2  35692  dihvalcqat  36008  dihmeetlem7N  36079  dihjatc1  36080  djh01  36181
  Copyright terms: Public domain W3C validator