MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omass Structured version   Visualization version   GIF version

Theorem omass 7524
Description: Multiplication of ordinal numbers is associative. Theorem 8.26 of [TakeutiZaring] p. 65. (Contributed by NM, 28-Dec-2004.)
Assertion
Ref Expression
omass ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 ·𝑜 𝐵) ·𝑜 𝐶) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝐶)))

Proof of Theorem omass
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6535 . . . . . 6 (𝑥 = ∅ → ((𝐴 ·𝑜 𝐵) ·𝑜 𝑥) = ((𝐴 ·𝑜 𝐵) ·𝑜 ∅))
2 oveq2 6535 . . . . . . 7 (𝑥 = ∅ → (𝐵 ·𝑜 𝑥) = (𝐵 ·𝑜 ∅))
32oveq2d 6543 . . . . . 6 (𝑥 = ∅ → (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥)) = (𝐴 ·𝑜 (𝐵 ·𝑜 ∅)))
41, 3eqeq12d 2624 . . . . 5 (𝑥 = ∅ → (((𝐴 ·𝑜 𝐵) ·𝑜 𝑥) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥)) ↔ ((𝐴 ·𝑜 𝐵) ·𝑜 ∅) = (𝐴 ·𝑜 (𝐵 ·𝑜 ∅))))
5 oveq2 6535 . . . . . 6 (𝑥 = 𝑦 → ((𝐴 ·𝑜 𝐵) ·𝑜 𝑥) = ((𝐴 ·𝑜 𝐵) ·𝑜 𝑦))
6 oveq2 6535 . . . . . . 7 (𝑥 = 𝑦 → (𝐵 ·𝑜 𝑥) = (𝐵 ·𝑜 𝑦))
76oveq2d 6543 . . . . . 6 (𝑥 = 𝑦 → (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥)) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)))
85, 7eqeq12d 2624 . . . . 5 (𝑥 = 𝑦 → (((𝐴 ·𝑜 𝐵) ·𝑜 𝑥) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥)) ↔ ((𝐴 ·𝑜 𝐵) ·𝑜 𝑦) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦))))
9 oveq2 6535 . . . . . 6 (𝑥 = suc 𝑦 → ((𝐴 ·𝑜 𝐵) ·𝑜 𝑥) = ((𝐴 ·𝑜 𝐵) ·𝑜 suc 𝑦))
10 oveq2 6535 . . . . . . 7 (𝑥 = suc 𝑦 → (𝐵 ·𝑜 𝑥) = (𝐵 ·𝑜 suc 𝑦))
1110oveq2d 6543 . . . . . 6 (𝑥 = suc 𝑦 → (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥)) = (𝐴 ·𝑜 (𝐵 ·𝑜 suc 𝑦)))
129, 11eqeq12d 2624 . . . . 5 (𝑥 = suc 𝑦 → (((𝐴 ·𝑜 𝐵) ·𝑜 𝑥) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥)) ↔ ((𝐴 ·𝑜 𝐵) ·𝑜 suc 𝑦) = (𝐴 ·𝑜 (𝐵 ·𝑜 suc 𝑦))))
13 oveq2 6535 . . . . . 6 (𝑥 = 𝐶 → ((𝐴 ·𝑜 𝐵) ·𝑜 𝑥) = ((𝐴 ·𝑜 𝐵) ·𝑜 𝐶))
14 oveq2 6535 . . . . . . 7 (𝑥 = 𝐶 → (𝐵 ·𝑜 𝑥) = (𝐵 ·𝑜 𝐶))
1514oveq2d 6543 . . . . . 6 (𝑥 = 𝐶 → (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥)) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝐶)))
1613, 15eqeq12d 2624 . . . . 5 (𝑥 = 𝐶 → (((𝐴 ·𝑜 𝐵) ·𝑜 𝑥) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥)) ↔ ((𝐴 ·𝑜 𝐵) ·𝑜 𝐶) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝐶))))
17 omcl 7480 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·𝑜 𝐵) ∈ On)
18 om0 7461 . . . . . . 7 ((𝐴 ·𝑜 𝐵) ∈ On → ((𝐴 ·𝑜 𝐵) ·𝑜 ∅) = ∅)
1917, 18syl 17 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·𝑜 𝐵) ·𝑜 ∅) = ∅)
20 om0 7461 . . . . . . . 8 (𝐵 ∈ On → (𝐵 ·𝑜 ∅) = ∅)
2120oveq2d 6543 . . . . . . 7 (𝐵 ∈ On → (𝐴 ·𝑜 (𝐵 ·𝑜 ∅)) = (𝐴 ·𝑜 ∅))
22 om0 7461 . . . . . . 7 (𝐴 ∈ On → (𝐴 ·𝑜 ∅) = ∅)
2321, 22sylan9eqr 2665 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·𝑜 (𝐵 ·𝑜 ∅)) = ∅)
2419, 23eqtr4d 2646 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·𝑜 𝐵) ·𝑜 ∅) = (𝐴 ·𝑜 (𝐵 ·𝑜 ∅)))
25 oveq1 6534 . . . . . . . . 9 (((𝐴 ·𝑜 𝐵) ·𝑜 𝑦) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) → (((𝐴 ·𝑜 𝐵) ·𝑜 𝑦) +𝑜 (𝐴 ·𝑜 𝐵)) = ((𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) +𝑜 (𝐴 ·𝑜 𝐵)))
26 omsuc 7470 . . . . . . . . . . 11 (((𝐴 ·𝑜 𝐵) ∈ On ∧ 𝑦 ∈ On) → ((𝐴 ·𝑜 𝐵) ·𝑜 suc 𝑦) = (((𝐴 ·𝑜 𝐵) ·𝑜 𝑦) +𝑜 (𝐴 ·𝑜 𝐵)))
2717, 26stoic3 1691 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 ·𝑜 𝐵) ·𝑜 suc 𝑦) = (((𝐴 ·𝑜 𝐵) ·𝑜 𝑦) +𝑜 (𝐴 ·𝑜 𝐵)))
28 omsuc 7470 . . . . . . . . . . . . 13 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 ·𝑜 suc 𝑦) = ((𝐵 ·𝑜 𝑦) +𝑜 𝐵))
29283adant1 1071 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 ·𝑜 suc 𝑦) = ((𝐵 ·𝑜 𝑦) +𝑜 𝐵))
3029oveq2d 6543 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·𝑜 (𝐵 ·𝑜 suc 𝑦)) = (𝐴 ·𝑜 ((𝐵 ·𝑜 𝑦) +𝑜 𝐵)))
31 omcl 7480 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 ·𝑜 𝑦) ∈ On)
32 odi 7523 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ On ∧ (𝐵 ·𝑜 𝑦) ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·𝑜 ((𝐵 ·𝑜 𝑦) +𝑜 𝐵)) = ((𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) +𝑜 (𝐴 ·𝑜 𝐵)))
3331, 32syl3an2 1351 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ 𝐵 ∈ On) → (𝐴 ·𝑜 ((𝐵 ·𝑜 𝑦) +𝑜 𝐵)) = ((𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) +𝑜 (𝐴 ·𝑜 𝐵)))
34333exp 1255 . . . . . . . . . . . . . . 15 (𝐴 ∈ On → ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 ∈ On → (𝐴 ·𝑜 ((𝐵 ·𝑜 𝑦) +𝑜 𝐵)) = ((𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) +𝑜 (𝐴 ·𝑜 𝐵)))))
3534expd 450 . . . . . . . . . . . . . 14 (𝐴 ∈ On → (𝐵 ∈ On → (𝑦 ∈ On → (𝐵 ∈ On → (𝐴 ·𝑜 ((𝐵 ·𝑜 𝑦) +𝑜 𝐵)) = ((𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) +𝑜 (𝐴 ·𝑜 𝐵))))))
3635com34 88 . . . . . . . . . . . . 13 (𝐴 ∈ On → (𝐵 ∈ On → (𝐵 ∈ On → (𝑦 ∈ On → (𝐴 ·𝑜 ((𝐵 ·𝑜 𝑦) +𝑜 𝐵)) = ((𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) +𝑜 (𝐴 ·𝑜 𝐵))))))
3736pm2.43d 50 . . . . . . . . . . . 12 (𝐴 ∈ On → (𝐵 ∈ On → (𝑦 ∈ On → (𝐴 ·𝑜 ((𝐵 ·𝑜 𝑦) +𝑜 𝐵)) = ((𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) +𝑜 (𝐴 ·𝑜 𝐵)))))
38373imp 1248 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·𝑜 ((𝐵 ·𝑜 𝑦) +𝑜 𝐵)) = ((𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) +𝑜 (𝐴 ·𝑜 𝐵)))
3930, 38eqtrd 2643 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·𝑜 (𝐵 ·𝑜 suc 𝑦)) = ((𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) +𝑜 (𝐴 ·𝑜 𝐵)))
4027, 39eqeq12d 2624 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (((𝐴 ·𝑜 𝐵) ·𝑜 suc 𝑦) = (𝐴 ·𝑜 (𝐵 ·𝑜 suc 𝑦)) ↔ (((𝐴 ·𝑜 𝐵) ·𝑜 𝑦) +𝑜 (𝐴 ·𝑜 𝐵)) = ((𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) +𝑜 (𝐴 ·𝑜 𝐵))))
4125, 40syl5ibr 234 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (((𝐴 ·𝑜 𝐵) ·𝑜 𝑦) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) → ((𝐴 ·𝑜 𝐵) ·𝑜 suc 𝑦) = (𝐴 ·𝑜 (𝐵 ·𝑜 suc 𝑦))))
42413exp 1255 . . . . . . 7 (𝐴 ∈ On → (𝐵 ∈ On → (𝑦 ∈ On → (((𝐴 ·𝑜 𝐵) ·𝑜 𝑦) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) → ((𝐴 ·𝑜 𝐵) ·𝑜 suc 𝑦) = (𝐴 ·𝑜 (𝐵 ·𝑜 suc 𝑦))))))
4342com3r 84 . . . . . 6 (𝑦 ∈ On → (𝐴 ∈ On → (𝐵 ∈ On → (((𝐴 ·𝑜 𝐵) ·𝑜 𝑦) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) → ((𝐴 ·𝑜 𝐵) ·𝑜 suc 𝑦) = (𝐴 ·𝑜 (𝐵 ·𝑜 suc 𝑦))))))
4443impd 445 . . . . 5 (𝑦 ∈ On → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (((𝐴 ·𝑜 𝐵) ·𝑜 𝑦) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) → ((𝐴 ·𝑜 𝐵) ·𝑜 suc 𝑦) = (𝐴 ·𝑜 (𝐵 ·𝑜 suc 𝑦)))))
4517ancoms 467 . . . . . . . . . . . . . 14 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝐴 ·𝑜 𝐵) ∈ On)
46 vex 3175 . . . . . . . . . . . . . . 15 𝑥 ∈ V
47 omlim 7477 . . . . . . . . . . . . . . 15 (((𝐴 ·𝑜 𝐵) ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → ((𝐴 ·𝑜 𝐵) ·𝑜 𝑥) = 𝑦𝑥 ((𝐴 ·𝑜 𝐵) ·𝑜 𝑦))
4846, 47mpanr1 714 . . . . . . . . . . . . . 14 (((𝐴 ·𝑜 𝐵) ∈ On ∧ Lim 𝑥) → ((𝐴 ·𝑜 𝐵) ·𝑜 𝑥) = 𝑦𝑥 ((𝐴 ·𝑜 𝐵) ·𝑜 𝑦))
4945, 48sylan 486 . . . . . . . . . . . . 13 (((𝐵 ∈ On ∧ 𝐴 ∈ On) ∧ Lim 𝑥) → ((𝐴 ·𝑜 𝐵) ·𝑜 𝑥) = 𝑦𝑥 ((𝐴 ·𝑜 𝐵) ·𝑜 𝑦))
5049an32s 841 . . . . . . . . . . . 12 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) → ((𝐴 ·𝑜 𝐵) ·𝑜 𝑥) = 𝑦𝑥 ((𝐴 ·𝑜 𝐵) ·𝑜 𝑦))
5150ad2antrr 757 . . . . . . . . . . 11 (((((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐵) ∧ ∀𝑦𝑥 ((𝐴 ·𝑜 𝐵) ·𝑜 𝑦) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦))) → ((𝐴 ·𝑜 𝐵) ·𝑜 𝑥) = 𝑦𝑥 ((𝐴 ·𝑜 𝐵) ·𝑜 𝑦))
52 iuneq2 4467 . . . . . . . . . . . 12 (∀𝑦𝑥 ((𝐴 ·𝑜 𝐵) ·𝑜 𝑦) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) → 𝑦𝑥 ((𝐴 ·𝑜 𝐵) ·𝑜 𝑦) = 𝑦𝑥 (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)))
53 limelon 5691 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ V ∧ Lim 𝑥) → 𝑥 ∈ On)
5446, 53mpan 701 . . . . . . . . . . . . . . . . . . . . 21 (Lim 𝑥𝑥 ∈ On)
5554anim1i 589 . . . . . . . . . . . . . . . . . . . 20 ((Lim 𝑥𝐵 ∈ On) → (𝑥 ∈ On ∧ 𝐵 ∈ On))
5655ancoms 467 . . . . . . . . . . . . . . . . . . 19 ((𝐵 ∈ On ∧ Lim 𝑥) → (𝑥 ∈ On ∧ 𝐵 ∈ On))
57 omordi 7510 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐵) → (𝑦𝑥 → (𝐵 ·𝑜 𝑦) ∈ (𝐵 ·𝑜 𝑥)))
5856, 57sylan 486 . . . . . . . . . . . . . . . . . 18 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ ∅ ∈ 𝐵) → (𝑦𝑥 → (𝐵 ·𝑜 𝑦) ∈ (𝐵 ·𝑜 𝑥)))
59 ssid 3586 . . . . . . . . . . . . . . . . . . 19 (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) ⊆ (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦))
60 oveq2 6535 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = (𝐵 ·𝑜 𝑦) → (𝐴 ·𝑜 𝑧) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)))
6160sseq2d 3595 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = (𝐵 ·𝑜 𝑦) → ((𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) ⊆ (𝐴 ·𝑜 𝑧) ↔ (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) ⊆ (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦))))
6261rspcev 3281 . . . . . . . . . . . . . . . . . . 19 (((𝐵 ·𝑜 𝑦) ∈ (𝐵 ·𝑜 𝑥) ∧ (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) ⊆ (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦))) → ∃𝑧 ∈ (𝐵 ·𝑜 𝑥)(𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) ⊆ (𝐴 ·𝑜 𝑧))
6359, 62mpan2 702 . . . . . . . . . . . . . . . . . 18 ((𝐵 ·𝑜 𝑦) ∈ (𝐵 ·𝑜 𝑥) → ∃𝑧 ∈ (𝐵 ·𝑜 𝑥)(𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) ⊆ (𝐴 ·𝑜 𝑧))
6458, 63syl6 34 . . . . . . . . . . . . . . . . 17 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ ∅ ∈ 𝐵) → (𝑦𝑥 → ∃𝑧 ∈ (𝐵 ·𝑜 𝑥)(𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) ⊆ (𝐴 ·𝑜 𝑧)))
6564ralrimiv 2947 . . . . . . . . . . . . . . . 16 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ ∅ ∈ 𝐵) → ∀𝑦𝑥𝑧 ∈ (𝐵 ·𝑜 𝑥)(𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) ⊆ (𝐴 ·𝑜 𝑧))
66 iunss2 4495 . . . . . . . . . . . . . . . 16 (∀𝑦𝑥𝑧 ∈ (𝐵 ·𝑜 𝑥)(𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) ⊆ (𝐴 ·𝑜 𝑧) → 𝑦𝑥 (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) ⊆ 𝑧 ∈ (𝐵 ·𝑜 𝑥)(𝐴 ·𝑜 𝑧))
6765, 66syl 17 . . . . . . . . . . . . . . 15 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ ∅ ∈ 𝐵) → 𝑦𝑥 (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) ⊆ 𝑧 ∈ (𝐵 ·𝑜 𝑥)(𝐴 ·𝑜 𝑧))
6867adantlr 746 . . . . . . . . . . . . . 14 ((((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐵) → 𝑦𝑥 (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) ⊆ 𝑧 ∈ (𝐵 ·𝑜 𝑥)(𝐴 ·𝑜 𝑧))
69 omcl 7480 . . . . . . . . . . . . . . . . . . . . 21 ((𝐵 ∈ On ∧ 𝑥 ∈ On) → (𝐵 ·𝑜 𝑥) ∈ On)
7054, 69sylan2 489 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 ∈ On ∧ Lim 𝑥) → (𝐵 ·𝑜 𝑥) ∈ On)
71 onelon 5651 . . . . . . . . . . . . . . . . . . . 20 (((𝐵 ·𝑜 𝑥) ∈ On ∧ 𝑧 ∈ (𝐵 ·𝑜 𝑥)) → 𝑧 ∈ On)
7270, 71sylan 486 . . . . . . . . . . . . . . . . . . 19 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝑧 ∈ (𝐵 ·𝑜 𝑥)) → 𝑧 ∈ On)
7372adantlr 746 . . . . . . . . . . . . . . . . . 18 ((((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) ∧ 𝑧 ∈ (𝐵 ·𝑜 𝑥)) → 𝑧 ∈ On)
74 omordlim 7521 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐵 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ 𝑧 ∈ (𝐵 ·𝑜 𝑥)) → ∃𝑦𝑥 𝑧 ∈ (𝐵 ·𝑜 𝑦))
7574ex 448 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐵 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (𝑧 ∈ (𝐵 ·𝑜 𝑥) → ∃𝑦𝑥 𝑧 ∈ (𝐵 ·𝑜 𝑦)))
7646, 75mpanr1 714 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐵 ∈ On ∧ Lim 𝑥) → (𝑧 ∈ (𝐵 ·𝑜 𝑥) → ∃𝑦𝑥 𝑧 ∈ (𝐵 ·𝑜 𝑦)))
7776ad2antlr 758 . . . . . . . . . . . . . . . . . . . . 21 (((𝑧 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝑥)) ∧ 𝐴 ∈ On) → (𝑧 ∈ (𝐵 ·𝑜 𝑥) → ∃𝑦𝑥 𝑧 ∈ (𝐵 ·𝑜 𝑦)))
78 onelon 5651 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑥 ∈ On ∧ 𝑦𝑥) → 𝑦 ∈ On)
7954, 78sylan 486 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((Lim 𝑥𝑦𝑥) → 𝑦 ∈ On)
8079, 31sylan2 489 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐵 ∈ On ∧ (Lim 𝑥𝑦𝑥)) → (𝐵 ·𝑜 𝑦) ∈ On)
81 onelss 5669 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝐵 ·𝑜 𝑦) ∈ On → (𝑧 ∈ (𝐵 ·𝑜 𝑦) → 𝑧 ⊆ (𝐵 ·𝑜 𝑦)))
82813ad2ant2 1075 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑧 ∈ On ∧ (𝐵 ·𝑜 𝑦) ∈ On ∧ 𝐴 ∈ On) → (𝑧 ∈ (𝐵 ·𝑜 𝑦) → 𝑧 ⊆ (𝐵 ·𝑜 𝑦)))
83 omwordi 7515 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑧 ∈ On ∧ (𝐵 ·𝑜 𝑦) ∈ On ∧ 𝐴 ∈ On) → (𝑧 ⊆ (𝐵 ·𝑜 𝑦) → (𝐴 ·𝑜 𝑧) ⊆ (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦))))
8482, 83syld 45 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑧 ∈ On ∧ (𝐵 ·𝑜 𝑦) ∈ On ∧ 𝐴 ∈ On) → (𝑧 ∈ (𝐵 ·𝑜 𝑦) → (𝐴 ·𝑜 𝑧) ⊆ (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦))))
85843exp 1255 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 ∈ On → ((𝐵 ·𝑜 𝑦) ∈ On → (𝐴 ∈ On → (𝑧 ∈ (𝐵 ·𝑜 𝑦) → (𝐴 ·𝑜 𝑧) ⊆ (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦))))))
8680, 85syl5 33 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 ∈ On → ((𝐵 ∈ On ∧ (Lim 𝑥𝑦𝑥)) → (𝐴 ∈ On → (𝑧 ∈ (𝐵 ·𝑜 𝑦) → (𝐴 ·𝑜 𝑧) ⊆ (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦))))))
8786exp4d 634 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 ∈ On → (𝐵 ∈ On → (Lim 𝑥 → (𝑦𝑥 → (𝐴 ∈ On → (𝑧 ∈ (𝐵 ·𝑜 𝑦) → (𝐴 ·𝑜 𝑧) ⊆ (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦))))))))
8887imp32 447 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑧 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝑥)) → (𝑦𝑥 → (𝐴 ∈ On → (𝑧 ∈ (𝐵 ·𝑜 𝑦) → (𝐴 ·𝑜 𝑧) ⊆ (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦))))))
8988com23 83 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑧 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝑥)) → (𝐴 ∈ On → (𝑦𝑥 → (𝑧 ∈ (𝐵 ·𝑜 𝑦) → (𝐴 ·𝑜 𝑧) ⊆ (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦))))))
9089imp 443 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑧 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝑥)) ∧ 𝐴 ∈ On) → (𝑦𝑥 → (𝑧 ∈ (𝐵 ·𝑜 𝑦) → (𝐴 ·𝑜 𝑧) ⊆ (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)))))
9190reximdvai 2997 . . . . . . . . . . . . . . . . . . . . 21 (((𝑧 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝑥)) ∧ 𝐴 ∈ On) → (∃𝑦𝑥 𝑧 ∈ (𝐵 ·𝑜 𝑦) → ∃𝑦𝑥 (𝐴 ·𝑜 𝑧) ⊆ (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦))))
9277, 91syld 45 . . . . . . . . . . . . . . . . . . . 20 (((𝑧 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝑥)) ∧ 𝐴 ∈ On) → (𝑧 ∈ (𝐵 ·𝑜 𝑥) → ∃𝑦𝑥 (𝐴 ·𝑜 𝑧) ⊆ (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦))))
9392exp31 627 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ On → ((𝐵 ∈ On ∧ Lim 𝑥) → (𝐴 ∈ On → (𝑧 ∈ (𝐵 ·𝑜 𝑥) → ∃𝑦𝑥 (𝐴 ·𝑜 𝑧) ⊆ (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦))))))
9493imp4c 614 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ On → ((((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) ∧ 𝑧 ∈ (𝐵 ·𝑜 𝑥)) → ∃𝑦𝑥 (𝐴 ·𝑜 𝑧) ⊆ (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦))))
9573, 94mpcom 37 . . . . . . . . . . . . . . . . 17 ((((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) ∧ 𝑧 ∈ (𝐵 ·𝑜 𝑥)) → ∃𝑦𝑥 (𝐴 ·𝑜 𝑧) ⊆ (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)))
9695ralrimiva 2948 . . . . . . . . . . . . . . . 16 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) → ∀𝑧 ∈ (𝐵 ·𝑜 𝑥)∃𝑦𝑥 (𝐴 ·𝑜 𝑧) ⊆ (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)))
97 iunss2 4495 . . . . . . . . . . . . . . . 16 (∀𝑧 ∈ (𝐵 ·𝑜 𝑥)∃𝑦𝑥 (𝐴 ·𝑜 𝑧) ⊆ (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) → 𝑧 ∈ (𝐵 ·𝑜 𝑥)(𝐴 ·𝑜 𝑧) ⊆ 𝑦𝑥 (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)))
9896, 97syl 17 . . . . . . . . . . . . . . 15 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) → 𝑧 ∈ (𝐵 ·𝑜 𝑥)(𝐴 ·𝑜 𝑧) ⊆ 𝑦𝑥 (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)))
9998adantr 479 . . . . . . . . . . . . . 14 ((((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐵) → 𝑧 ∈ (𝐵 ·𝑜 𝑥)(𝐴 ·𝑜 𝑧) ⊆ 𝑦𝑥 (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)))
10068, 99eqssd 3584 . . . . . . . . . . . . 13 ((((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐵) → 𝑦𝑥 (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) = 𝑧 ∈ (𝐵 ·𝑜 𝑥)(𝐴 ·𝑜 𝑧))
101 omlimcl 7522 . . . . . . . . . . . . . . . . 17 (((𝐵 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ ∅ ∈ 𝐵) → Lim (𝐵 ·𝑜 𝑥))
10246, 101mpanlr1 717 . . . . . . . . . . . . . . . 16 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ ∅ ∈ 𝐵) → Lim (𝐵 ·𝑜 𝑥))
103 ovex 6555 . . . . . . . . . . . . . . . . 17 (𝐵 ·𝑜 𝑥) ∈ V
104 omlim 7477 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ On ∧ ((𝐵 ·𝑜 𝑥) ∈ V ∧ Lim (𝐵 ·𝑜 𝑥))) → (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥)) = 𝑧 ∈ (𝐵 ·𝑜 𝑥)(𝐴 ·𝑜 𝑧))
105103, 104mpanr1 714 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ On ∧ Lim (𝐵 ·𝑜 𝑥)) → (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥)) = 𝑧 ∈ (𝐵 ·𝑜 𝑥)(𝐴 ·𝑜 𝑧))
106102, 105sylan2 489 . . . . . . . . . . . . . . 15 ((𝐴 ∈ On ∧ ((𝐵 ∈ On ∧ Lim 𝑥) ∧ ∅ ∈ 𝐵)) → (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥)) = 𝑧 ∈ (𝐵 ·𝑜 𝑥)(𝐴 ·𝑜 𝑧))
107106ancoms 467 . . . . . . . . . . . . . 14 ((((𝐵 ∈ On ∧ Lim 𝑥) ∧ ∅ ∈ 𝐵) ∧ 𝐴 ∈ On) → (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥)) = 𝑧 ∈ (𝐵 ·𝑜 𝑥)(𝐴 ·𝑜 𝑧))
108107an32s 841 . . . . . . . . . . . . 13 ((((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐵) → (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥)) = 𝑧 ∈ (𝐵 ·𝑜 𝑥)(𝐴 ·𝑜 𝑧))
109100, 108eqtr4d 2646 . . . . . . . . . . . 12 ((((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐵) → 𝑦𝑥 (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥)))
11052, 109sylan9eqr 2665 . . . . . . . . . . 11 (((((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐵) ∧ ∀𝑦𝑥 ((𝐴 ·𝑜 𝐵) ·𝑜 𝑦) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦))) → 𝑦𝑥 ((𝐴 ·𝑜 𝐵) ·𝑜 𝑦) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥)))
11151, 110eqtrd 2643 . . . . . . . . . 10 (((((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐵) ∧ ∀𝑦𝑥 ((𝐴 ·𝑜 𝐵) ·𝑜 𝑦) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦))) → ((𝐴 ·𝑜 𝐵) ·𝑜 𝑥) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥)))
112111exp31 627 . . . . . . . . 9 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) → (∅ ∈ 𝐵 → (∀𝑦𝑥 ((𝐴 ·𝑜 𝐵) ·𝑜 𝑦) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) → ((𝐴 ·𝑜 𝐵) ·𝑜 𝑥) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥)))))
113 eloni 5636 . . . . . . . . . . . . 13 (𝐵 ∈ On → Ord 𝐵)
114 ord0eln0 5682 . . . . . . . . . . . . . 14 (Ord 𝐵 → (∅ ∈ 𝐵𝐵 ≠ ∅))
115114necon2bbid 2824 . . . . . . . . . . . . 13 (Ord 𝐵 → (𝐵 = ∅ ↔ ¬ ∅ ∈ 𝐵))
116113, 115syl 17 . . . . . . . . . . . 12 (𝐵 ∈ On → (𝐵 = ∅ ↔ ¬ ∅ ∈ 𝐵))
117116ad2antrr 757 . . . . . . . . . . 11 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) → (𝐵 = ∅ ↔ ¬ ∅ ∈ 𝐵))
118 oveq2 6535 . . . . . . . . . . . . . . . . . . 19 (𝐵 = ∅ → (𝐴 ·𝑜 𝐵) = (𝐴 ·𝑜 ∅))
119118, 22sylan9eqr 2665 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ On ∧ 𝐵 = ∅) → (𝐴 ·𝑜 𝐵) = ∅)
120119oveq1d 6542 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ On ∧ 𝐵 = ∅) → ((𝐴 ·𝑜 𝐵) ·𝑜 𝑥) = (∅ ·𝑜 𝑥))
121 om0r 7483 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ On → (∅ ·𝑜 𝑥) = ∅)
122120, 121sylan9eqr 2665 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 = ∅)) → ((𝐴 ·𝑜 𝐵) ·𝑜 𝑥) = ∅)
123122anassrs 677 . . . . . . . . . . . . . . 15 (((𝑥 ∈ On ∧ 𝐴 ∈ On) ∧ 𝐵 = ∅) → ((𝐴 ·𝑜 𝐵) ·𝑜 𝑥) = ∅)
124 oveq1 6534 . . . . . . . . . . . . . . . . . . 19 (𝐵 = ∅ → (𝐵 ·𝑜 𝑥) = (∅ ·𝑜 𝑥))
125124, 121sylan9eqr 2665 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ On ∧ 𝐵 = ∅) → (𝐵 ·𝑜 𝑥) = ∅)
126125oveq2d 6543 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ On ∧ 𝐵 = ∅) → (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥)) = (𝐴 ·𝑜 ∅))
127126, 22sylan9eq 2663 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ On ∧ 𝐵 = ∅) ∧ 𝐴 ∈ On) → (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥)) = ∅)
128127an32s 841 . . . . . . . . . . . . . . 15 (((𝑥 ∈ On ∧ 𝐴 ∈ On) ∧ 𝐵 = ∅) → (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥)) = ∅)
129123, 128eqtr4d 2646 . . . . . . . . . . . . . 14 (((𝑥 ∈ On ∧ 𝐴 ∈ On) ∧ 𝐵 = ∅) → ((𝐴 ·𝑜 𝐵) ·𝑜 𝑥) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥)))
130129ex 448 . . . . . . . . . . . . 13 ((𝑥 ∈ On ∧ 𝐴 ∈ On) → (𝐵 = ∅ → ((𝐴 ·𝑜 𝐵) ·𝑜 𝑥) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥))))
13154, 130sylan 486 . . . . . . . . . . . 12 ((Lim 𝑥𝐴 ∈ On) → (𝐵 = ∅ → ((𝐴 ·𝑜 𝐵) ·𝑜 𝑥) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥))))
132131adantll 745 . . . . . . . . . . 11 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) → (𝐵 = ∅ → ((𝐴 ·𝑜 𝐵) ·𝑜 𝑥) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥))))
133117, 132sylbird 248 . . . . . . . . . 10 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) → (¬ ∅ ∈ 𝐵 → ((𝐴 ·𝑜 𝐵) ·𝑜 𝑥) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥))))
134133a1dd 47 . . . . . . . . 9 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) → (¬ ∅ ∈ 𝐵 → (∀𝑦𝑥 ((𝐴 ·𝑜 𝐵) ·𝑜 𝑦) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) → ((𝐴 ·𝑜 𝐵) ·𝑜 𝑥) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥)))))
135112, 134pm2.61d 168 . . . . . . . 8 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) → (∀𝑦𝑥 ((𝐴 ·𝑜 𝐵) ·𝑜 𝑦) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) → ((𝐴 ·𝑜 𝐵) ·𝑜 𝑥) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥))))
136135exp31 627 . . . . . . 7 (𝐵 ∈ On → (Lim 𝑥 → (𝐴 ∈ On → (∀𝑦𝑥 ((𝐴 ·𝑜 𝐵) ·𝑜 𝑦) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) → ((𝐴 ·𝑜 𝐵) ·𝑜 𝑥) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥))))))
137136com3l 86 . . . . . 6 (Lim 𝑥 → (𝐴 ∈ On → (𝐵 ∈ On → (∀𝑦𝑥 ((𝐴 ·𝑜 𝐵) ·𝑜 𝑦) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) → ((𝐴 ·𝑜 𝐵) ·𝑜 𝑥) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥))))))
138137impd 445 . . . . 5 (Lim 𝑥 → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∀𝑦𝑥 ((𝐴 ·𝑜 𝐵) ·𝑜 𝑦) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) → ((𝐴 ·𝑜 𝐵) ·𝑜 𝑥) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥)))))
1394, 8, 12, 16, 24, 44, 138tfinds3 6933 . . . 4 (𝐶 ∈ On → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·𝑜 𝐵) ·𝑜 𝐶) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝐶))))
140139expd 450 . . 3 (𝐶 ∈ On → (𝐴 ∈ On → (𝐵 ∈ On → ((𝐴 ·𝑜 𝐵) ·𝑜 𝐶) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝐶)))))
141140com3l 86 . 2 (𝐴 ∈ On → (𝐵 ∈ On → (𝐶 ∈ On → ((𝐴 ·𝑜 𝐵) ·𝑜 𝐶) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝐶)))))
1421413imp 1248 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 ·𝑜 𝐵) ·𝑜 𝐶) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wa 382  w3a 1030   = wceq 1474  wcel 1976  wral 2895  wrex 2896  Vcvv 3172  wss 3539  c0 3873   ciun 4449  Ord word 5625  Oncon0 5626  Lim wlim 5627  suc csuc 5628  (class class class)co 6527   +𝑜 coa 7421   ·𝑜 comu 7422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6935  df-1st 7036  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-oadd 7428  df-omul 7429
This theorem is referenced by:  oeoalem  7540  omabs  7591
  Copyright terms: Public domain W3C validator