Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omef Structured version   Visualization version   GIF version

Theorem omef 40017
 Description: An outer measure is a function that maps to nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
omef.o (𝜑𝑂 ∈ OutMeas)
omef.x 𝑋 = dom 𝑂
Assertion
Ref Expression
omef (𝜑𝑂:𝒫 𝑋⟶(0[,]+∞))

Proof of Theorem omef
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omef.o . . . . 5 (𝜑𝑂 ∈ OutMeas)
2 isome 40015 . . . . . 6 (𝑂 ∈ OutMeas → (𝑂 ∈ OutMeas ↔ ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦(𝑂𝑧) ≤ (𝑂𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂 𝑦) ≤ (Σ^‘(𝑂𝑦))))))
31, 2syl 17 . . . . 5 (𝜑 → (𝑂 ∈ OutMeas ↔ ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦(𝑂𝑧) ≤ (𝑂𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂 𝑦) ≤ (Σ^‘(𝑂𝑦))))))
41, 3mpbid 222 . . . 4 (𝜑 → ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦(𝑂𝑧) ≤ (𝑂𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂 𝑦) ≤ (Σ^‘(𝑂𝑦)))))
54simplld 790 . . 3 (𝜑 → ((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂) ∧ (𝑂‘∅) = 0))
65simplld 790 . 2 (𝜑𝑂:dom 𝑂⟶(0[,]+∞))
7 simp-4r 806 . . . . 5 (((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦(𝑂𝑧) ≤ (𝑂𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂 𝑦) ≤ (Σ^‘(𝑂𝑦)))) → dom 𝑂 = 𝒫 dom 𝑂)
84, 7syl 17 . . . 4 (𝜑 → dom 𝑂 = 𝒫 dom 𝑂)
9 omef.x . . . . 5 𝑋 = dom 𝑂
109pweqi 4134 . . . 4 𝒫 𝑋 = 𝒫 dom 𝑂
118, 10syl6reqr 2674 . . 3 (𝜑 → 𝒫 𝑋 = dom 𝑂)
1211feq2d 5988 . 2 (𝜑 → (𝑂:𝒫 𝑋⟶(0[,]+∞) ↔ 𝑂:dom 𝑂⟶(0[,]+∞)))
136, 12mpbird 247 1 (𝜑𝑂:𝒫 𝑋⟶(0[,]+∞))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384   = wceq 1480   ∈ wcel 1987  ∀wral 2907  ∅c0 3891  𝒫 cpw 4130  ∪ cuni 4402   class class class wbr 4613  dom cdm 5074   ↾ cres 5076  ⟶wf 5843  ‘cfv 5847  (class class class)co 6604  ωcom 7012   ≼ cdom 7897  0cc0 9880  +∞cpnf 10015   ≤ cle 10019  [,]cicc 12120  Σ^csumge0 39886  OutMeascome 40010 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-br 4614  df-opab 4674  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-fv 5855  df-ome 40011 This theorem is referenced by:  omecl  40024  omeunle  40037  omeiunle  40038  caratheodory  40049
 Copyright terms: Public domain W3C validator