Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omeiunlempt Structured version   Visualization version   GIF version

Theorem omeiunlempt 40503
 Description: The outer measure of the indexed union of a countable set is the less than or equal to the extended sum of the outer measures. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
omeiunlempt.nph 𝑛𝜑
omeiunlempt.o (𝜑𝑂 ∈ OutMeas)
omeiunlempt.x 𝑋 = dom 𝑂
omeiunlempt.z 𝑍 = (ℤ𝑁)
omeiunlempt.e ((𝜑𝑛𝑍) → 𝐸𝑋)
Assertion
Ref Expression
omeiunlempt (𝜑 → (𝑂 𝑛𝑍 𝐸) ≤ (Σ^‘(𝑛𝑍 ↦ (𝑂𝐸))))
Distinct variable groups:   𝑛,𝑂   𝑛,𝑋   𝑛,𝑍
Allowed substitution hints:   𝜑(𝑛)   𝐸(𝑛)   𝑁(𝑛)

Proof of Theorem omeiunlempt
StepHypRef Expression
1 omeiunlempt.nph . . 3 𝑛𝜑
2 nfmpt1 4745 . . 3 𝑛(𝑛𝑍𝐸)
3 omeiunlempt.o . . 3 (𝜑𝑂 ∈ OutMeas)
4 omeiunlempt.x . . 3 𝑋 = dom 𝑂
5 omeiunlempt.z . . 3 𝑍 = (ℤ𝑁)
6 omeiunlempt.e . . . . 5 ((𝜑𝑛𝑍) → 𝐸𝑋)
73, 4unidmex 39043 . . . . . . . 8 (𝜑𝑋 ∈ V)
87adantr 481 . . . . . . 7 ((𝜑𝑛𝑍) → 𝑋 ∈ V)
9 ssexg 4802 . . . . . . 7 ((𝐸𝑋𝑋 ∈ V) → 𝐸 ∈ V)
106, 8, 9syl2anc 693 . . . . . 6 ((𝜑𝑛𝑍) → 𝐸 ∈ V)
11 elpwg 4164 . . . . . 6 (𝐸 ∈ V → (𝐸 ∈ 𝒫 𝑋𝐸𝑋))
1210, 11syl 17 . . . . 5 ((𝜑𝑛𝑍) → (𝐸 ∈ 𝒫 𝑋𝐸𝑋))
136, 12mpbird 247 . . . 4 ((𝜑𝑛𝑍) → 𝐸 ∈ 𝒫 𝑋)
14 eqid 2621 . . . 4 (𝑛𝑍𝐸) = (𝑛𝑍𝐸)
151, 13, 14fmptdf 6385 . . 3 (𝜑 → (𝑛𝑍𝐸):𝑍⟶𝒫 𝑋)
161, 2, 3, 4, 5, 15omeiunle 40500 . 2 (𝜑 → (𝑂 𝑛𝑍 ((𝑛𝑍𝐸)‘𝑛)) ≤ (Σ^‘(𝑛𝑍 ↦ (𝑂‘((𝑛𝑍𝐸)‘𝑛)))))
17 simpr 477 . . . . . . 7 ((𝜑𝑛𝑍) → 𝑛𝑍)
1814fvmpt2 6289 . . . . . . 7 ((𝑛𝑍𝐸 ∈ V) → ((𝑛𝑍𝐸)‘𝑛) = 𝐸)
1917, 10, 18syl2anc 693 . . . . . 6 ((𝜑𝑛𝑍) → ((𝑛𝑍𝐸)‘𝑛) = 𝐸)
2019eqcomd 2627 . . . . 5 ((𝜑𝑛𝑍) → 𝐸 = ((𝑛𝑍𝐸)‘𝑛))
211, 20iuneq2df 39038 . . . 4 (𝜑 𝑛𝑍 𝐸 = 𝑛𝑍 ((𝑛𝑍𝐸)‘𝑛))
2221fveq2d 6193 . . 3 (𝜑 → (𝑂 𝑛𝑍 𝐸) = (𝑂 𝑛𝑍 ((𝑛𝑍𝐸)‘𝑛)))
2320fveq2d 6193 . . . . 5 ((𝜑𝑛𝑍) → (𝑂𝐸) = (𝑂‘((𝑛𝑍𝐸)‘𝑛)))
241, 23mpteq2da 4741 . . . 4 (𝜑 → (𝑛𝑍 ↦ (𝑂𝐸)) = (𝑛𝑍 ↦ (𝑂‘((𝑛𝑍𝐸)‘𝑛))))
2524fveq2d 6193 . . 3 (𝜑 → (Σ^‘(𝑛𝑍 ↦ (𝑂𝐸))) = (Σ^‘(𝑛𝑍 ↦ (𝑂‘((𝑛𝑍𝐸)‘𝑛)))))
2622, 25breq12d 4664 . 2 (𝜑 → ((𝑂 𝑛𝑍 𝐸) ≤ (Σ^‘(𝑛𝑍 ↦ (𝑂𝐸))) ↔ (𝑂 𝑛𝑍 ((𝑛𝑍𝐸)‘𝑛)) ≤ (Σ^‘(𝑛𝑍 ↦ (𝑂‘((𝑛𝑍𝐸)‘𝑛))))))
2716, 26mpbird 247 1 (𝜑 → (𝑂 𝑛𝑍 𝐸) ≤ (Σ^‘(𝑛𝑍 ↦ (𝑂𝐸))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384   = wceq 1482  Ⅎwnf 1707   ∈ wcel 1989  Vcvv 3198   ⊆ wss 3572  𝒫 cpw 4156  ∪ cuni 4434  ∪ ciun 4518   class class class wbr 4651   ↦ cmpt 4727  dom cdm 5112  ‘cfv 5886   ≤ cle 10072  ℤ≥cuz 11684  Σ^csumge0 40348  OutMeascome 40472 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-rep 4769  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904  ax-un 6946  ax-inf2 8535  ax-ac2 9282  ax-cnex 9989  ax-resscn 9990  ax-1cn 9991  ax-icn 9992  ax-addcl 9993  ax-addrcl 9994  ax-mulcl 9995  ax-mulrcl 9996  ax-mulcom 9997  ax-addass 9998  ax-mulass 9999  ax-distr 10000  ax-i2m1 10001  ax-1ne0 10002  ax-1rid 10003  ax-rnegex 10004  ax-rrecex 10005  ax-cnre 10006  ax-pre-lttri 10007  ax-pre-lttrn 10008  ax-pre-ltadd 10009  ax-pre-mulgt0 10010  ax-pre-sup 10011 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1485  df-fal 1488  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-nel 2897  df-ral 2916  df-rex 2917  df-reu 2918  df-rmo 2919  df-rab 2920  df-v 3200  df-sbc 3434  df-csb 3532  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-pss 3588  df-nul 3914  df-if 4085  df-pw 4158  df-sn 4176  df-pr 4178  df-tp 4180  df-op 4182  df-uni 4435  df-int 4474  df-iun 4520  df-br 4652  df-opab 4711  df-mpt 4728  df-tr 4751  df-id 5022  df-eprel 5027  df-po 5033  df-so 5034  df-fr 5071  df-se 5072  df-we 5073  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-rn 5123  df-res 5124  df-ima 5125  df-pred 5678  df-ord 5724  df-on 5725  df-lim 5726  df-suc 5727  df-iota 5849  df-fun 5888  df-fn 5889  df-f 5890  df-f1 5891  df-fo 5892  df-f1o 5893  df-fv 5894  df-isom 5895  df-riota 6608  df-ov 6650  df-oprab 6651  df-mpt2 6652  df-om 7063  df-1st 7165  df-2nd 7166  df-wrecs 7404  df-recs 7465  df-rdg 7503  df-1o 7557  df-oadd 7561  df-omul 7562  df-er 7739  df-map 7856  df-en 7953  df-dom 7954  df-sdom 7955  df-fin 7956  df-sup 8345  df-oi 8412  df-card 8762  df-acn 8765  df-ac 8936  df-pnf 10073  df-mnf 10074  df-xr 10075  df-ltxr 10076  df-le 10077  df-sub 10265  df-neg 10266  df-div 10682  df-nn 11018  df-2 11076  df-3 11077  df-n0 11290  df-z 11375  df-uz 11685  df-rp 11830  df-ico 12178  df-icc 12179  df-fz 12324  df-fzo 12462  df-seq 12797  df-exp 12856  df-hash 13113  df-cj 13833  df-re 13834  df-im 13835  df-sqrt 13969  df-abs 13970  df-clim 14213  df-sum 14411  df-sumge0 40349  df-ome 40473 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator