Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omeiunltfirp Structured version   Visualization version   GIF version

Theorem omeiunltfirp 42808
Description: If the outer measure of a countable union is not +∞, then it can be arbitrarily approximated by finite sums of outer measures. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
omeiunltfirp.o (𝜑𝑂 ∈ OutMeas)
omeiunltfirp.x 𝑋 = dom 𝑂
omeiunltfirp.z 𝑍 = (ℤ𝑁)
omeiunltfirp.e (𝜑𝐸:𝑍⟶𝒫 𝑋)
omeiunltfirp.re (𝜑 → (𝑂 𝑛𝑍 (𝐸𝑛)) ∈ ℝ)
omeiunltfirp.y (𝜑𝑌 ∈ ℝ+)
Assertion
Ref Expression
omeiunltfirp (𝜑 → ∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌))
Distinct variable groups:   𝑛,𝐸,𝑧   𝑛,𝑂,𝑧   𝑛,𝑋   𝑧,𝑌   𝑛,𝑍,𝑧   𝜑,𝑛,𝑧
Allowed substitution hints:   𝑁(𝑧,𝑛)   𝑋(𝑧)   𝑌(𝑛)

Proof of Theorem omeiunltfirp
Dummy variables 𝑘 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omeiunltfirp.z . . . . . 6 𝑍 = (ℤ𝑁)
21fvexi 6686 . . . . 5 𝑍 ∈ V
32a1i 11 . . . 4 ((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) = +∞) → 𝑍 ∈ V)
4 omeiunltfirp.o . . . . . . . 8 (𝜑𝑂 ∈ OutMeas)
54adantr 483 . . . . . . 7 ((𝜑𝑛𝑍) → 𝑂 ∈ OutMeas)
6 omeiunltfirp.x . . . . . . 7 𝑋 = dom 𝑂
7 omeiunltfirp.e . . . . . . . . 9 (𝜑𝐸:𝑍⟶𝒫 𝑋)
87ffvelrnda 6853 . . . . . . . 8 ((𝜑𝑛𝑍) → (𝐸𝑛) ∈ 𝒫 𝑋)
9 fvex 6685 . . . . . . . . 9 (𝐸𝑛) ∈ V
109elpw 4545 . . . . . . . 8 ((𝐸𝑛) ∈ 𝒫 𝑋 ↔ (𝐸𝑛) ⊆ 𝑋)
118, 10sylib 220 . . . . . . 7 ((𝜑𝑛𝑍) → (𝐸𝑛) ⊆ 𝑋)
125, 6, 11omecl 42792 . . . . . 6 ((𝜑𝑛𝑍) → (𝑂‘(𝐸𝑛)) ∈ (0[,]+∞))
13 eqid 2823 . . . . . 6 (𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))) = (𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))
1412, 13fmptd 6880 . . . . 5 (𝜑 → (𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))):𝑍⟶(0[,]+∞))
1514adantr 483 . . . 4 ((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) = +∞) → (𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))):𝑍⟶(0[,]+∞))
16 simpr 487 . . . 4 ((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) = +∞) → (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) = +∞)
17 omeiunltfirp.re . . . . 5 (𝜑 → (𝑂 𝑛𝑍 (𝐸𝑛)) ∈ ℝ)
1817adantr 483 . . . 4 ((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) = +∞) → (𝑂 𝑛𝑍 (𝐸𝑛)) ∈ ℝ)
193, 15, 16, 18sge0pnffigt 42685 . . 3 ((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) = +∞) → ∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘((𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))) ↾ 𝑧)))
20 simpl 485 . . . . . . 7 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘((𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))) ↾ 𝑧))) → (𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)))
21 simpr 487 . . . . . . . . 9 ((𝑧 ∈ (𝒫 𝑍 ∩ Fin) ∧ (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘((𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))) ↾ 𝑧))) → (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘((𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))) ↾ 𝑧)))
22 elpwinss 41318 . . . . . . . . . . . 12 (𝑧 ∈ (𝒫 𝑍 ∩ Fin) → 𝑧𝑍)
2322resmptd 5910 . . . . . . . . . . 11 (𝑧 ∈ (𝒫 𝑍 ∩ Fin) → ((𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))) ↾ 𝑧) = (𝑛𝑧 ↦ (𝑂‘(𝐸𝑛))))
2423fveq2d 6676 . . . . . . . . . 10 (𝑧 ∈ (𝒫 𝑍 ∩ Fin) → (Σ^‘((𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))) ↾ 𝑧)) = (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))))
2524adantr 483 . . . . . . . . 9 ((𝑧 ∈ (𝒫 𝑍 ∩ Fin) ∧ (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘((𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))) ↾ 𝑧))) → (Σ^‘((𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))) ↾ 𝑧)) = (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))))
2621, 25breqtrd 5094 . . . . . . . 8 ((𝑧 ∈ (𝒫 𝑍 ∩ Fin) ∧ (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘((𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))) ↾ 𝑧))) → (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))))
2726adantll 712 . . . . . . 7 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘((𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))) ↾ 𝑧))) → (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))))
2817rexrd 10693 . . . . . . . . 9 (𝜑 → (𝑂 𝑛𝑍 (𝐸𝑛)) ∈ ℝ*)
2928ad2antrr 724 . . . . . . . 8 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛))))) → (𝑂 𝑛𝑍 (𝐸𝑛)) ∈ ℝ*)
30 simpr 487 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → 𝑧 ∈ (𝒫 𝑍 ∩ Fin))
314ad2antrr 724 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → 𝑂 ∈ OutMeas)
327ad2antrr 724 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → 𝐸:𝑍⟶𝒫 𝑋)
3322adantr 483 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑛𝑧) → 𝑧𝑍)
34 simpr 487 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑛𝑧) → 𝑛𝑧)
3533, 34sseldd 3970 . . . . . . . . . . . . . . 15 ((𝑧 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑛𝑧) → 𝑛𝑍)
3635adantll 712 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → 𝑛𝑍)
3732, 36ffvelrnd 6854 . . . . . . . . . . . . 13 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → (𝐸𝑛) ∈ 𝒫 𝑋)
3837, 10sylib 220 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → (𝐸𝑛) ⊆ 𝑋)
3931, 6, 38omecl 42792 . . . . . . . . . . 11 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → (𝑂‘(𝐸𝑛)) ∈ (0[,]+∞))
40 eqid 2823 . . . . . . . . . . 11 (𝑛𝑧 ↦ (𝑂‘(𝐸𝑛))) = (𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))
4139, 40fmptd 6880 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → (𝑛𝑧 ↦ (𝑂‘(𝐸𝑛))):𝑧⟶(0[,]+∞))
4230, 41sge0xrcl 42674 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ*)
4342adantr 483 . . . . . . . 8 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛))))) → (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ*)
44 elinel2 4175 . . . . . . . . . . . . 13 (𝑧 ∈ (𝒫 𝑍 ∩ Fin) → 𝑧 ∈ Fin)
4544adantl 484 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → 𝑧 ∈ Fin)
46 rge0ssre 12847 . . . . . . . . . . . . 13 (0[,)+∞) ⊆ ℝ
47 0xr 10690 . . . . . . . . . . . . . . 15 0 ∈ ℝ*
4847a1i 11 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → 0 ∈ ℝ*)
49 pnfxr 10697 . . . . . . . . . . . . . . 15 +∞ ∈ ℝ*
5049a1i 11 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → +∞ ∈ ℝ*)
5131, 6, 38omexrcl 42796 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → (𝑂‘(𝐸𝑛)) ∈ ℝ*)
52 iccgelb 12796 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ (𝑂‘(𝐸𝑛)) ∈ (0[,]+∞)) → 0 ≤ (𝑂‘(𝐸𝑛)))
5348, 50, 39, 52syl3anc 1367 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → 0 ≤ (𝑂‘(𝐸𝑛)))
5411ralrimiva 3184 . . . . . . . . . . . . . . . . . 18 (𝜑 → ∀𝑛𝑍 (𝐸𝑛) ⊆ 𝑋)
55 iunss 4971 . . . . . . . . . . . . . . . . . 18 ( 𝑛𝑍 (𝐸𝑛) ⊆ 𝑋 ↔ ∀𝑛𝑍 (𝐸𝑛) ⊆ 𝑋)
5654, 55sylibr 236 . . . . . . . . . . . . . . . . 17 (𝜑 𝑛𝑍 (𝐸𝑛) ⊆ 𝑋)
5756ad2antrr 724 . . . . . . . . . . . . . . . 16 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → 𝑛𝑍 (𝐸𝑛) ⊆ 𝑋)
5831, 6, 57omexrcl 42796 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → (𝑂 𝑛𝑍 (𝐸𝑛)) ∈ ℝ*)
59 ssiun2 4973 . . . . . . . . . . . . . . . . 17 (𝑛𝑍 → (𝐸𝑛) ⊆ 𝑛𝑍 (𝐸𝑛))
6036, 59syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → (𝐸𝑛) ⊆ 𝑛𝑍 (𝐸𝑛))
6131, 6, 57, 60omessle 42787 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → (𝑂‘(𝐸𝑛)) ≤ (𝑂 𝑛𝑍 (𝐸𝑛)))
6217ltpnfd 12519 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑂 𝑛𝑍 (𝐸𝑛)) < +∞)
6362ad2antrr 724 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → (𝑂 𝑛𝑍 (𝐸𝑛)) < +∞)
6451, 58, 50, 61, 63xrlelttrd 12556 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → (𝑂‘(𝐸𝑛)) < +∞)
6548, 50, 51, 53, 64elicod 12790 . . . . . . . . . . . . 13 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → (𝑂‘(𝐸𝑛)) ∈ (0[,)+∞))
6646, 65sseldi 3967 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → (𝑂‘(𝐸𝑛)) ∈ ℝ)
6745, 66fsumrecl 15093 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) ∈ ℝ)
68 omeiunltfirp.y . . . . . . . . . . . . 13 (𝜑𝑌 ∈ ℝ+)
6968rpred 12434 . . . . . . . . . . . 12 (𝜑𝑌 ∈ ℝ)
7069adantr 483 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → 𝑌 ∈ ℝ)
7167, 70readdcld 10672 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌) ∈ ℝ)
7271rexrd 10693 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌) ∈ ℝ*)
7372adantr 483 . . . . . . . 8 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛))))) → (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌) ∈ ℝ*)
74 simpr 487 . . . . . . . 8 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛))))) → (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))))
7565, 40fmptd 6880 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → (𝑛𝑧 ↦ (𝑂‘(𝐸𝑛))):𝑧⟶(0[,)+∞))
7645, 75sge0fsum 42676 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) = Σ𝑘𝑧 ((𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))‘𝑘))
77 eqidd 2824 . . . . . . . . . . . . 13 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑘𝑧) → (𝑛𝑧 ↦ (𝑂‘(𝐸𝑛))) = (𝑛𝑧 ↦ (𝑂‘(𝐸𝑛))))
78 2fveq3 6677 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → (𝑂‘(𝐸𝑛)) = (𝑂‘(𝐸𝑘)))
7978adantl 484 . . . . . . . . . . . . 13 ((((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑘𝑧) ∧ 𝑛 = 𝑘) → (𝑂‘(𝐸𝑛)) = (𝑂‘(𝐸𝑘)))
80 simpr 487 . . . . . . . . . . . . 13 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑘𝑧) → 𝑘𝑧)
81 fvexd 6687 . . . . . . . . . . . . 13 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑘𝑧) → (𝑂‘(𝐸𝑘)) ∈ V)
8277, 79, 80, 81fvmptd 6777 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑘𝑧) → ((𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))‘𝑘) = (𝑂‘(𝐸𝑘)))
8382sumeq2dv 15062 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → Σ𝑘𝑧 ((𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))‘𝑘) = Σ𝑘𝑧 (𝑂‘(𝐸𝑘)))
84 2fveq3 6677 . . . . . . . . . . . . 13 (𝑘 = 𝑛 → (𝑂‘(𝐸𝑘)) = (𝑂‘(𝐸𝑛)))
8584cbvsumv 15055 . . . . . . . . . . . 12 Σ𝑘𝑧 (𝑂‘(𝐸𝑘)) = Σ𝑛𝑧 (𝑂‘(𝐸𝑛))
8685a1i 11 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → Σ𝑘𝑧 (𝑂‘(𝐸𝑘)) = Σ𝑛𝑧 (𝑂‘(𝐸𝑛)))
8776, 83, 863eqtrd 2862 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) = Σ𝑛𝑧 (𝑂‘(𝐸𝑛)))
8868adantr 483 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → 𝑌 ∈ ℝ+)
8967, 88ltaddrpd 12467 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) < (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌))
9087, 89eqbrtrd 5090 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) < (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌))
9190adantr 483 . . . . . . . 8 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛))))) → (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) < (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌))
9229, 43, 73, 74, 91xrlttrd 12555 . . . . . . 7 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛))))) → (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌))
9320, 27, 92syl2anc 586 . . . . . 6 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘((𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))) ↾ 𝑧))) → (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌))
9493ex 415 . . . . 5 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → ((𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘((𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))) ↾ 𝑧)) → (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌)))
9594adantlr 713 . . . 4 (((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) = +∞) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → ((𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘((𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))) ↾ 𝑧)) → (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌)))
9695reximdva 3276 . . 3 ((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) = +∞) → (∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘((𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))) ↾ 𝑧)) → ∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌)))
9719, 96mpd 15 . 2 ((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) = +∞) → ∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌))
98 simpl 485 . . 3 ((𝜑 ∧ ¬ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) = +∞) → 𝜑)
99 simpr 487 . . . 4 ((𝜑 ∧ ¬ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) = +∞) → ¬ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) = +∞)
1002a1i 11 . . . . . 6 (𝜑𝑍 ∈ V)
101100, 14sge0repnf 42675 . . . . 5 (𝜑 → ((Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ ↔ ¬ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) = +∞))
102101adantr 483 . . . 4 ((𝜑 ∧ ¬ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) = +∞) → ((Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ ↔ ¬ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) = +∞))
10399, 102mpbird 259 . . 3 ((𝜑 ∧ ¬ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) = +∞) → (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ)
104 nfv 1915 . . . . . 6 𝑛𝜑
105 nfcv 2979 . . . . . . . 8 𝑛Σ^
106 nfmpt1 5166 . . . . . . . 8 𝑛(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))
107105, 106nffv 6682 . . . . . . 7 𝑛^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))))
108 nfcv 2979 . . . . . . 7 𝑛
109107, 108nfel 2994 . . . . . 6 𝑛^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ
110104, 109nfan 1900 . . . . 5 𝑛(𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ)
1112a1i 11 . . . . 5 ((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) → 𝑍 ∈ V)
11212adantlr 713 . . . . 5 (((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) ∧ 𝑛𝑍) → (𝑂‘(𝐸𝑛)) ∈ (0[,]+∞))
11368adantr 483 . . . . 5 ((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) → 𝑌 ∈ ℝ+)
114 simpr 487 . . . . 5 ((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) → (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ)
115110, 111, 112, 113, 114sge0ltfirpmpt 42697 . . . 4 ((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) → ∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) < ((Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) + 𝑌))
11617ad3antrrr 728 . . . . . . 7 ((((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) < ((Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) + 𝑌)) → (𝑂 𝑛𝑍 (𝐸𝑛)) ∈ ℝ)
117114ad2antrr 724 . . . . . . 7 ((((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) < ((Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) + 𝑌)) → (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ)
11871ad4ant13 749 . . . . . . 7 ((((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) < ((Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) + 𝑌)) → (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌) ∈ ℝ)
119 nfcv 2979 . . . . . . . . 9 𝑛𝐸
120104, 119, 4, 6, 1, 7omeiunle 42806 . . . . . . . 8 (𝜑 → (𝑂 𝑛𝑍 (𝐸𝑛)) ≤ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))))
121120ad3antrrr 728 . . . . . . 7 ((((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) < ((Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) + 𝑌)) → (𝑂 𝑛𝑍 (𝐸𝑛)) ≤ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))))
122 simpr 487 . . . . . . . 8 ((((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) < ((Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) + 𝑌)) → (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) < ((Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) + 𝑌))
123 simpll 765 . . . . . . . . . . 11 (((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → 𝜑)
124 2fveq3 6677 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑚 → (𝑂‘(𝐸𝑛)) = (𝑂‘(𝐸𝑚)))
125124cbvmptv 5171 . . . . . . . . . . . . . . 15 (𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))) = (𝑚𝑍 ↦ (𝑂‘(𝐸𝑚)))
126125fveq2i 6675 . . . . . . . . . . . . . 14 ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) = (Σ^‘(𝑚𝑍 ↦ (𝑂‘(𝐸𝑚))))
127126eleq1i 2905 . . . . . . . . . . . . 13 ((Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ ↔ (Σ^‘(𝑚𝑍 ↦ (𝑂‘(𝐸𝑚)))) ∈ ℝ)
128127biimpi 218 . . . . . . . . . . . 12 ((Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ → (Σ^‘(𝑚𝑍 ↦ (𝑂‘(𝐸𝑚)))) ∈ ℝ)
129128ad2antlr 725 . . . . . . . . . . 11 (((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → (Σ^‘(𝑚𝑍 ↦ (𝑂‘(𝐸𝑚)))) ∈ ℝ)
130 simpr 487 . . . . . . . . . . 11 (((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → 𝑧 ∈ (𝒫 𝑍 ∩ Fin))
13144adantl 484 . . . . . . . . . . . 12 (((𝜑 ∧ (Σ^‘(𝑚𝑍 ↦ (𝑂‘(𝐸𝑚)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → 𝑧 ∈ Fin)
13265adantllr 717 . . . . . . . . . . . 12 ((((𝜑 ∧ (Σ^‘(𝑚𝑍 ↦ (𝑂‘(𝐸𝑚)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → (𝑂‘(𝐸𝑛)) ∈ (0[,)+∞))
133131, 132sge0fsummpt 42679 . . . . . . . . . . 11 (((𝜑 ∧ (Σ^‘(𝑚𝑍 ↦ (𝑂‘(𝐸𝑚)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) = Σ𝑛𝑧 (𝑂‘(𝐸𝑛)))
134123, 129, 130, 133syl21anc 835 . . . . . . . . . 10 (((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) = Σ𝑛𝑧 (𝑂‘(𝐸𝑛)))
135134oveq1d 7173 . . . . . . . . 9 (((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → ((Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) + 𝑌) = (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌))
136135adantr 483 . . . . . . . 8 ((((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) < ((Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) + 𝑌)) → ((Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) + 𝑌) = (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌))
137122, 136breqtrd 5094 . . . . . . 7 ((((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) < ((Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) + 𝑌)) → (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) < (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌))
138116, 117, 118, 121, 137lelttrd 10800 . . . . . 6 ((((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) < ((Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) + 𝑌)) → (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌))
139138ex 415 . . . . 5 (((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → ((Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) < ((Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) + 𝑌) → (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌)))
140139reximdva 3276 . . . 4 ((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) → (∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) < ((Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) + 𝑌) → ∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌)))
141115, 140mpd 15 . . 3 ((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) → ∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌))
14298, 103, 141syl2anc 586 . 2 ((𝜑 ∧ ¬ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) = +∞) → ∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌))
14397, 142pm2.61dan 811 1 (𝜑 → ∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3140  wrex 3141  Vcvv 3496  cin 3937  wss 3938  𝒫 cpw 4541   cuni 4840   ciun 4921   class class class wbr 5068  cmpt 5148  dom cdm 5557  cres 5559  wf 6353  cfv 6357  (class class class)co 7158  Fincfn 8511  cr 10538  0cc0 10539   + caddc 10542  +∞cpnf 10674  *cxr 10676   < clt 10677  cle 10678  cuz 12246  +crp 12392  [,)cico 12743  [,]cicc 12744  Σcsu 15044  Σ^csumge0 42651  OutMeascome 42778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-ac2 9887  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-omul 8109  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-oi 8976  df-card 9370  df-acn 9373  df-ac 9544  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847  df-sum 15045  df-sumge0 42652  df-ome 42779
This theorem is referenced by:  carageniuncllem2  42811
  Copyright terms: Public domain W3C validator