Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omessle Structured version   Visualization version   GIF version

Theorem omessle 41033
Description: The outer measure of a set is larger or equal to the measure of a subset, Definition 113A (ii) of [Fremlin1] p. 19. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
omessle.o (𝜑𝑂 ∈ OutMeas)
omessle.x 𝑋 = dom 𝑂
omessle.b (𝜑𝐵𝑋)
omessle.a (𝜑𝐴𝐵)
Assertion
Ref Expression
omessle (𝜑 → (𝑂𝐴) ≤ (𝑂𝐵))

Proof of Theorem omessle
Dummy variables 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omessle.a . . 3 (𝜑𝐴𝐵)
2 omessle.o . . . . . . 7 (𝜑𝑂 ∈ OutMeas)
3 omessle.x . . . . . . 7 𝑋 = dom 𝑂
42, 3unidmex 39531 . . . . . 6 (𝜑𝑋 ∈ V)
5 omessle.b . . . . . 6 (𝜑𝐵𝑋)
64, 5ssexd 4838 . . . . 5 (𝜑𝐵 ∈ V)
76, 1ssexd 4838 . . . 4 (𝜑𝐴 ∈ V)
8 elpwg 4199 . . . 4 (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝐵𝐴𝐵))
97, 8syl 17 . . 3 (𝜑 → (𝐴 ∈ 𝒫 𝐵𝐴𝐵))
101, 9mpbird 247 . 2 (𝜑𝐴 ∈ 𝒫 𝐵)
115, 3syl6sseq 3684 . . . 4 (𝜑𝐵 dom 𝑂)
12 elpwg 4199 . . . . 5 (𝐵 ∈ V → (𝐵 ∈ 𝒫 dom 𝑂𝐵 dom 𝑂))
136, 12syl 17 . . . 4 (𝜑 → (𝐵 ∈ 𝒫 dom 𝑂𝐵 dom 𝑂))
1411, 13mpbird 247 . . 3 (𝜑𝐵 ∈ 𝒫 dom 𝑂)
15 isome 41029 . . . . . 6 (𝑂 ∈ OutMeas → (𝑂 ∈ OutMeas ↔ ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦(𝑂𝑧) ≤ (𝑂𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂 𝑦) ≤ (Σ^‘(𝑂𝑦))))))
162, 15syl 17 . . . . 5 (𝜑 → (𝑂 ∈ OutMeas ↔ ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦(𝑂𝑧) ≤ (𝑂𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂 𝑦) ≤ (Σ^‘(𝑂𝑦))))))
172, 16mpbid 222 . . . 4 (𝜑 → ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦(𝑂𝑧) ≤ (𝑂𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂 𝑦) ≤ (Σ^‘(𝑂𝑦)))))
1817simplrd 808 . . 3 (𝜑 → ∀𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦(𝑂𝑧) ≤ (𝑂𝑦))
19 pweq 4194 . . . . . 6 (𝑦 = 𝐵 → 𝒫 𝑦 = 𝒫 𝐵)
2019raleqdv 3174 . . . . 5 (𝑦 = 𝐵 → (∀𝑧 ∈ 𝒫 𝑦(𝑂𝑧) ≤ (𝑂𝑦) ↔ ∀𝑧 ∈ 𝒫 𝐵(𝑂𝑧) ≤ (𝑂𝑦)))
21 fveq2 6229 . . . . . . 7 (𝑦 = 𝐵 → (𝑂𝑦) = (𝑂𝐵))
2221breq2d 4697 . . . . . 6 (𝑦 = 𝐵 → ((𝑂𝑧) ≤ (𝑂𝑦) ↔ (𝑂𝑧) ≤ (𝑂𝐵)))
2322ralbidv 3015 . . . . 5 (𝑦 = 𝐵 → (∀𝑧 ∈ 𝒫 𝐵(𝑂𝑧) ≤ (𝑂𝑦) ↔ ∀𝑧 ∈ 𝒫 𝐵(𝑂𝑧) ≤ (𝑂𝐵)))
2420, 23bitrd 268 . . . 4 (𝑦 = 𝐵 → (∀𝑧 ∈ 𝒫 𝑦(𝑂𝑧) ≤ (𝑂𝑦) ↔ ∀𝑧 ∈ 𝒫 𝐵(𝑂𝑧) ≤ (𝑂𝐵)))
2524rspcva 3338 . . 3 ((𝐵 ∈ 𝒫 dom 𝑂 ∧ ∀𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦(𝑂𝑧) ≤ (𝑂𝑦)) → ∀𝑧 ∈ 𝒫 𝐵(𝑂𝑧) ≤ (𝑂𝐵))
2614, 18, 25syl2anc 694 . 2 (𝜑 → ∀𝑧 ∈ 𝒫 𝐵(𝑂𝑧) ≤ (𝑂𝐵))
27 fveq2 6229 . . . 4 (𝑧 = 𝐴 → (𝑂𝑧) = (𝑂𝐴))
2827breq1d 4695 . . 3 (𝑧 = 𝐴 → ((𝑂𝑧) ≤ (𝑂𝐵) ↔ (𝑂𝐴) ≤ (𝑂𝐵)))
2928rspcva 3338 . 2 ((𝐴 ∈ 𝒫 𝐵 ∧ ∀𝑧 ∈ 𝒫 𝐵(𝑂𝑧) ≤ (𝑂𝐵)) → (𝑂𝐴) ≤ (𝑂𝐵))
3010, 26, 29syl2anc 694 1 (𝜑 → (𝑂𝐴) ≤ (𝑂𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wral 2941  Vcvv 3231  wss 3607  c0 3948  𝒫 cpw 4191   cuni 4468   class class class wbr 4685  dom cdm 5143  cres 5145  wf 5922  cfv 5926  (class class class)co 6690  ωcom 7107  cdom 7995  0cc0 9974  +∞cpnf 10109  cle 10113  [,]cicc 12216  Σ^csumge0 40897  OutMeascome 41024
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-fv 5934  df-ome 41025
This theorem is referenced by:  omessre  41045  omeiunltfirp  41054  carageniuncllem2  41057  caratheodorylem2  41062  omess0  41069  caragencmpl  41070
  Copyright terms: Public domain W3C validator