Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omessle Structured version   Visualization version   GIF version

Theorem omessle 42773
Description: The outer measure of a set is greater than or equal to the measure of a subset, Definition 113A (ii) of [Fremlin1] p. 19. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
omessle.o (𝜑𝑂 ∈ OutMeas)
omessle.x 𝑋 = dom 𝑂
omessle.b (𝜑𝐵𝑋)
omessle.a (𝜑𝐴𝐵)
Assertion
Ref Expression
omessle (𝜑 → (𝑂𝐴) ≤ (𝑂𝐵))

Proof of Theorem omessle
Dummy variables 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omessle.a . . 3 (𝜑𝐴𝐵)
2 omessle.o . . . . . . 7 (𝜑𝑂 ∈ OutMeas)
3 omessle.x . . . . . . 7 𝑋 = dom 𝑂
42, 3unidmex 41305 . . . . . 6 (𝜑𝑋 ∈ V)
5 omessle.b . . . . . 6 (𝜑𝐵𝑋)
64, 5ssexd 5221 . . . . 5 (𝜑𝐵 ∈ V)
76, 1ssexd 5221 . . . 4 (𝜑𝐴 ∈ V)
8 elpwg 4545 . . . 4 (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝐵𝐴𝐵))
97, 8syl 17 . . 3 (𝜑 → (𝐴 ∈ 𝒫 𝐵𝐴𝐵))
101, 9mpbird 259 . 2 (𝜑𝐴 ∈ 𝒫 𝐵)
115, 3sseqtrdi 4017 . . . 4 (𝜑𝐵 dom 𝑂)
12 elpwg 4545 . . . . 5 (𝐵 ∈ V → (𝐵 ∈ 𝒫 dom 𝑂𝐵 dom 𝑂))
136, 12syl 17 . . . 4 (𝜑 → (𝐵 ∈ 𝒫 dom 𝑂𝐵 dom 𝑂))
1411, 13mpbird 259 . . 3 (𝜑𝐵 ∈ 𝒫 dom 𝑂)
15 isome 42769 . . . . . 6 (𝑂 ∈ OutMeas → (𝑂 ∈ OutMeas ↔ ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦(𝑂𝑧) ≤ (𝑂𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂 𝑦) ≤ (Σ^‘(𝑂𝑦))))))
162, 15syl 17 . . . . 5 (𝜑 → (𝑂 ∈ OutMeas ↔ ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦(𝑂𝑧) ≤ (𝑂𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂 𝑦) ≤ (Σ^‘(𝑂𝑦))))))
172, 16mpbid 234 . . . 4 (𝜑 → ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦(𝑂𝑧) ≤ (𝑂𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂 𝑦) ≤ (Σ^‘(𝑂𝑦)))))
1817simplrd 768 . . 3 (𝜑 → ∀𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦(𝑂𝑧) ≤ (𝑂𝑦))
19 pweq 4542 . . . . . 6 (𝑦 = 𝐵 → 𝒫 𝑦 = 𝒫 𝐵)
2019raleqdv 3416 . . . . 5 (𝑦 = 𝐵 → (∀𝑧 ∈ 𝒫 𝑦(𝑂𝑧) ≤ (𝑂𝑦) ↔ ∀𝑧 ∈ 𝒫 𝐵(𝑂𝑧) ≤ (𝑂𝑦)))
21 fveq2 6665 . . . . . . 7 (𝑦 = 𝐵 → (𝑂𝑦) = (𝑂𝐵))
2221breq2d 5071 . . . . . 6 (𝑦 = 𝐵 → ((𝑂𝑧) ≤ (𝑂𝑦) ↔ (𝑂𝑧) ≤ (𝑂𝐵)))
2322ralbidv 3197 . . . . 5 (𝑦 = 𝐵 → (∀𝑧 ∈ 𝒫 𝐵(𝑂𝑧) ≤ (𝑂𝑦) ↔ ∀𝑧 ∈ 𝒫 𝐵(𝑂𝑧) ≤ (𝑂𝐵)))
2420, 23bitrd 281 . . . 4 (𝑦 = 𝐵 → (∀𝑧 ∈ 𝒫 𝑦(𝑂𝑧) ≤ (𝑂𝑦) ↔ ∀𝑧 ∈ 𝒫 𝐵(𝑂𝑧) ≤ (𝑂𝐵)))
2524rspcva 3621 . . 3 ((𝐵 ∈ 𝒫 dom 𝑂 ∧ ∀𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦(𝑂𝑧) ≤ (𝑂𝑦)) → ∀𝑧 ∈ 𝒫 𝐵(𝑂𝑧) ≤ (𝑂𝐵))
2614, 18, 25syl2anc 586 . 2 (𝜑 → ∀𝑧 ∈ 𝒫 𝐵(𝑂𝑧) ≤ (𝑂𝐵))
27 fveq2 6665 . . . 4 (𝑧 = 𝐴 → (𝑂𝑧) = (𝑂𝐴))
2827breq1d 5069 . . 3 (𝑧 = 𝐴 → ((𝑂𝑧) ≤ (𝑂𝐵) ↔ (𝑂𝐴) ≤ (𝑂𝐵)))
2928rspcva 3621 . 2 ((𝐴 ∈ 𝒫 𝐵 ∧ ∀𝑧 ∈ 𝒫 𝐵(𝑂𝑧) ≤ (𝑂𝐵)) → (𝑂𝐴) ≤ (𝑂𝐵))
3010, 26, 29syl2anc 586 1 (𝜑 → (𝑂𝐴) ≤ (𝑂𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wral 3138  Vcvv 3495  wss 3936  c0 4291  𝒫 cpw 4539   cuni 4832   class class class wbr 5059  dom cdm 5550  cres 5552  wf 6346  cfv 6350  (class class class)co 7150  ωcom 7574  cdom 8501  0cc0 10531  +∞cpnf 10666  cle 10670  [,]cicc 12735  Σ^csumge0 42637  OutMeascome 42764
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pr 5322  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3497  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-br 5060  df-opab 5122  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-fv 6358  df-ome 42765
This theorem is referenced by:  omessre  42785  omeiunltfirp  42794  carageniuncllem2  42797  caratheodorylem2  42802  omess0  42809  caragencmpl  42810
  Copyright terms: Public domain W3C validator