MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omeu Structured version   Visualization version   GIF version

Theorem omeu 8214
Description: The division algorithm for ordinal multiplication. (Contributed by Mario Carneiro, 28-Feb-2013.)
Assertion
Ref Expression
omeu ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → ∃!𝑧𝑥 ∈ On ∃𝑦𝐴 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧

Proof of Theorem omeu
Dummy variables 𝑟 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omeulem1 8211 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ On ∃𝑦𝐴 ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)
2 opex 5359 . . . . . . . . 9 𝑥, 𝑦⟩ ∈ V
32isseti 3511 . . . . . . . 8 𝑧 𝑧 = ⟨𝑥, 𝑦
4 19.41v 1949 . . . . . . . 8 (∃𝑧(𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵) ↔ (∃𝑧 𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵))
53, 4mpbiran 707 . . . . . . 7 (∃𝑧(𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵) ↔ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)
65rexbii 3250 . . . . . 6 (∃𝑦𝐴𝑧(𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵) ↔ ∃𝑦𝐴 ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)
7 rexcom4 3252 . . . . . 6 (∃𝑦𝐴𝑧(𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵) ↔ ∃𝑧𝑦𝐴 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵))
86, 7bitr3i 279 . . . . 5 (∃𝑦𝐴 ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵 ↔ ∃𝑧𝑦𝐴 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵))
98rexbii 3250 . . . 4 (∃𝑥 ∈ On ∃𝑦𝐴 ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵 ↔ ∃𝑥 ∈ On ∃𝑧𝑦𝐴 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵))
10 rexcom4 3252 . . . 4 (∃𝑥 ∈ On ∃𝑧𝑦𝐴 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵) ↔ ∃𝑧𝑥 ∈ On ∃𝑦𝐴 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵))
119, 10bitri 277 . . 3 (∃𝑥 ∈ On ∃𝑦𝐴 ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵 ↔ ∃𝑧𝑥 ∈ On ∃𝑦𝐴 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵))
121, 11sylib 220 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → ∃𝑧𝑥 ∈ On ∃𝑦𝐴 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵))
13 simp2rl 1238 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ((𝑥 ∈ On ∧ 𝑦𝐴) ∧ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) ∧ ((𝑟 ∈ On ∧ 𝑠𝐴) ∧ (𝑡 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·o 𝑟) +o 𝑠) = 𝐵))) → 𝑧 = ⟨𝑥, 𝑦⟩)
14 simp3rl 1242 . . . . . . . . . . . 12 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ((𝑥 ∈ On ∧ 𝑦𝐴) ∧ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) ∧ ((𝑟 ∈ On ∧ 𝑠𝐴) ∧ (𝑡 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·o 𝑟) +o 𝑠) = 𝐵))) → 𝑡 = ⟨𝑟, 𝑠⟩)
15 simp2rr 1239 . . . . . . . . . . . . . . 15 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ((𝑥 ∈ On ∧ 𝑦𝐴) ∧ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) ∧ ((𝑟 ∈ On ∧ 𝑠𝐴) ∧ (𝑡 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·o 𝑟) +o 𝑠) = 𝐵))) → ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)
16 simp3rr 1243 . . . . . . . . . . . . . . 15 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ((𝑥 ∈ On ∧ 𝑦𝐴) ∧ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) ∧ ((𝑟 ∈ On ∧ 𝑠𝐴) ∧ (𝑡 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·o 𝑟) +o 𝑠) = 𝐵))) → ((𝐴 ·o 𝑟) +o 𝑠) = 𝐵)
1715, 16eqtr4d 2862 . . . . . . . . . . . . . 14 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ((𝑥 ∈ On ∧ 𝑦𝐴) ∧ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) ∧ ((𝑟 ∈ On ∧ 𝑠𝐴) ∧ (𝑡 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·o 𝑟) +o 𝑠) = 𝐵))) → ((𝐴 ·o 𝑥) +o 𝑦) = ((𝐴 ·o 𝑟) +o 𝑠))
18 simp11 1199 . . . . . . . . . . . . . . 15 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ((𝑥 ∈ On ∧ 𝑦𝐴) ∧ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) ∧ ((𝑟 ∈ On ∧ 𝑠𝐴) ∧ (𝑡 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·o 𝑟) +o 𝑠) = 𝐵))) → 𝐴 ∈ On)
19 simp13 1201 . . . . . . . . . . . . . . 15 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ((𝑥 ∈ On ∧ 𝑦𝐴) ∧ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) ∧ ((𝑟 ∈ On ∧ 𝑠𝐴) ∧ (𝑡 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·o 𝑟) +o 𝑠) = 𝐵))) → 𝐴 ≠ ∅)
20 simp2ll 1236 . . . . . . . . . . . . . . 15 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ((𝑥 ∈ On ∧ 𝑦𝐴) ∧ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) ∧ ((𝑟 ∈ On ∧ 𝑠𝐴) ∧ (𝑡 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·o 𝑟) +o 𝑠) = 𝐵))) → 𝑥 ∈ On)
21 simp2lr 1237 . . . . . . . . . . . . . . 15 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ((𝑥 ∈ On ∧ 𝑦𝐴) ∧ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) ∧ ((𝑟 ∈ On ∧ 𝑠𝐴) ∧ (𝑡 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·o 𝑟) +o 𝑠) = 𝐵))) → 𝑦𝐴)
22 simp3ll 1240 . . . . . . . . . . . . . . 15 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ((𝑥 ∈ On ∧ 𝑦𝐴) ∧ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) ∧ ((𝑟 ∈ On ∧ 𝑠𝐴) ∧ (𝑡 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·o 𝑟) +o 𝑠) = 𝐵))) → 𝑟 ∈ On)
23 simp3lr 1241 . . . . . . . . . . . . . . 15 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ((𝑥 ∈ On ∧ 𝑦𝐴) ∧ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) ∧ ((𝑟 ∈ On ∧ 𝑠𝐴) ∧ (𝑡 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·o 𝑟) +o 𝑠) = 𝐵))) → 𝑠𝐴)
24 omopth2 8213 . . . . . . . . . . . . . . 15 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝑥 ∈ On ∧ 𝑦𝐴) ∧ (𝑟 ∈ On ∧ 𝑠𝐴)) → (((𝐴 ·o 𝑥) +o 𝑦) = ((𝐴 ·o 𝑟) +o 𝑠) ↔ (𝑥 = 𝑟𝑦 = 𝑠)))
2518, 19, 20, 21, 22, 23, 24syl222anc 1382 . . . . . . . . . . . . . 14 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ((𝑥 ∈ On ∧ 𝑦𝐴) ∧ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) ∧ ((𝑟 ∈ On ∧ 𝑠𝐴) ∧ (𝑡 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·o 𝑟) +o 𝑠) = 𝐵))) → (((𝐴 ·o 𝑥) +o 𝑦) = ((𝐴 ·o 𝑟) +o 𝑠) ↔ (𝑥 = 𝑟𝑦 = 𝑠)))
2617, 25mpbid 234 . . . . . . . . . . . . 13 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ((𝑥 ∈ On ∧ 𝑦𝐴) ∧ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) ∧ ((𝑟 ∈ On ∧ 𝑠𝐴) ∧ (𝑡 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·o 𝑟) +o 𝑠) = 𝐵))) → (𝑥 = 𝑟𝑦 = 𝑠))
27 opeq12 4808 . . . . . . . . . . . . 13 ((𝑥 = 𝑟𝑦 = 𝑠) → ⟨𝑥, 𝑦⟩ = ⟨𝑟, 𝑠⟩)
2826, 27syl 17 . . . . . . . . . . . 12 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ((𝑥 ∈ On ∧ 𝑦𝐴) ∧ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) ∧ ((𝑟 ∈ On ∧ 𝑠𝐴) ∧ (𝑡 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·o 𝑟) +o 𝑠) = 𝐵))) → ⟨𝑥, 𝑦⟩ = ⟨𝑟, 𝑠⟩)
2914, 28eqtr4d 2862 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ((𝑥 ∈ On ∧ 𝑦𝐴) ∧ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) ∧ ((𝑟 ∈ On ∧ 𝑠𝐴) ∧ (𝑡 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·o 𝑟) +o 𝑠) = 𝐵))) → 𝑡 = ⟨𝑥, 𝑦⟩)
3013, 29eqtr4d 2862 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ((𝑥 ∈ On ∧ 𝑦𝐴) ∧ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) ∧ ((𝑟 ∈ On ∧ 𝑠𝐴) ∧ (𝑡 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·o 𝑟) +o 𝑠) = 𝐵))) → 𝑧 = 𝑡)
31303expia 1117 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ((𝑥 ∈ On ∧ 𝑦𝐴) ∧ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵))) → (((𝑟 ∈ On ∧ 𝑠𝐴) ∧ (𝑡 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·o 𝑟) +o 𝑠) = 𝐵)) → 𝑧 = 𝑡))
3231exp4b 433 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → (((𝑥 ∈ On ∧ 𝑦𝐴) ∧ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) → ((𝑟 ∈ On ∧ 𝑠𝐴) → ((𝑡 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·o 𝑟) +o 𝑠) = 𝐵) → 𝑧 = 𝑡))))
3332expd 418 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → ((𝑥 ∈ On ∧ 𝑦𝐴) → ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵) → ((𝑟 ∈ On ∧ 𝑠𝐴) → ((𝑡 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·o 𝑟) +o 𝑠) = 𝐵) → 𝑧 = 𝑡)))))
3433rexlimdvv 3296 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → (∃𝑥 ∈ On ∃𝑦𝐴 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵) → ((𝑟 ∈ On ∧ 𝑠𝐴) → ((𝑡 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·o 𝑟) +o 𝑠) = 𝐵) → 𝑧 = 𝑡))))
3534imp 409 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ∃𝑥 ∈ On ∃𝑦𝐴 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) → ((𝑟 ∈ On ∧ 𝑠𝐴) → ((𝑡 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·o 𝑟) +o 𝑠) = 𝐵) → 𝑧 = 𝑡)))
3635rexlimdvv 3296 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ∃𝑥 ∈ On ∃𝑦𝐴 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) → (∃𝑟 ∈ On ∃𝑠𝐴 (𝑡 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·o 𝑟) +o 𝑠) = 𝐵) → 𝑧 = 𝑡))
3736expimpd 456 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → ((∃𝑥 ∈ On ∃𝑦𝐴 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵) ∧ ∃𝑟 ∈ On ∃𝑠𝐴 (𝑡 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·o 𝑟) +o 𝑠) = 𝐵)) → 𝑧 = 𝑡))
3837alrimivv 1928 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → ∀𝑧𝑡((∃𝑥 ∈ On ∃𝑦𝐴 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵) ∧ ∃𝑟 ∈ On ∃𝑠𝐴 (𝑡 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·o 𝑟) +o 𝑠) = 𝐵)) → 𝑧 = 𝑡))
39 opeq1 4806 . . . . . . 7 (𝑥 = 𝑟 → ⟨𝑥, 𝑦⟩ = ⟨𝑟, 𝑦⟩)
4039eqeq2d 2835 . . . . . 6 (𝑥 = 𝑟 → (𝑧 = ⟨𝑥, 𝑦⟩ ↔ 𝑧 = ⟨𝑟, 𝑦⟩))
41 oveq2 7167 . . . . . . . 8 (𝑥 = 𝑟 → (𝐴 ·o 𝑥) = (𝐴 ·o 𝑟))
4241oveq1d 7174 . . . . . . 7 (𝑥 = 𝑟 → ((𝐴 ·o 𝑥) +o 𝑦) = ((𝐴 ·o 𝑟) +o 𝑦))
4342eqeq1d 2826 . . . . . 6 (𝑥 = 𝑟 → (((𝐴 ·o 𝑥) +o 𝑦) = 𝐵 ↔ ((𝐴 ·o 𝑟) +o 𝑦) = 𝐵))
4440, 43anbi12d 632 . . . . 5 (𝑥 = 𝑟 → ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵) ↔ (𝑧 = ⟨𝑟, 𝑦⟩ ∧ ((𝐴 ·o 𝑟) +o 𝑦) = 𝐵)))
45 opeq2 4807 . . . . . . 7 (𝑦 = 𝑠 → ⟨𝑟, 𝑦⟩ = ⟨𝑟, 𝑠⟩)
4645eqeq2d 2835 . . . . . 6 (𝑦 = 𝑠 → (𝑧 = ⟨𝑟, 𝑦⟩ ↔ 𝑧 = ⟨𝑟, 𝑠⟩))
47 oveq2 7167 . . . . . . 7 (𝑦 = 𝑠 → ((𝐴 ·o 𝑟) +o 𝑦) = ((𝐴 ·o 𝑟) +o 𝑠))
4847eqeq1d 2826 . . . . . 6 (𝑦 = 𝑠 → (((𝐴 ·o 𝑟) +o 𝑦) = 𝐵 ↔ ((𝐴 ·o 𝑟) +o 𝑠) = 𝐵))
4946, 48anbi12d 632 . . . . 5 (𝑦 = 𝑠 → ((𝑧 = ⟨𝑟, 𝑦⟩ ∧ ((𝐴 ·o 𝑟) +o 𝑦) = 𝐵) ↔ (𝑧 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·o 𝑟) +o 𝑠) = 𝐵)))
5044, 49cbvrex2vw 3465 . . . 4 (∃𝑥 ∈ On ∃𝑦𝐴 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵) ↔ ∃𝑟 ∈ On ∃𝑠𝐴 (𝑧 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·o 𝑟) +o 𝑠) = 𝐵))
51 eqeq1 2828 . . . . . 6 (𝑧 = 𝑡 → (𝑧 = ⟨𝑟, 𝑠⟩ ↔ 𝑡 = ⟨𝑟, 𝑠⟩))
5251anbi1d 631 . . . . 5 (𝑧 = 𝑡 → ((𝑧 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·o 𝑟) +o 𝑠) = 𝐵) ↔ (𝑡 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·o 𝑟) +o 𝑠) = 𝐵)))
53522rexbidv 3303 . . . 4 (𝑧 = 𝑡 → (∃𝑟 ∈ On ∃𝑠𝐴 (𝑧 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·o 𝑟) +o 𝑠) = 𝐵) ↔ ∃𝑟 ∈ On ∃𝑠𝐴 (𝑡 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·o 𝑟) +o 𝑠) = 𝐵)))
5450, 53syl5bb 285 . . 3 (𝑧 = 𝑡 → (∃𝑥 ∈ On ∃𝑦𝐴 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵) ↔ ∃𝑟 ∈ On ∃𝑠𝐴 (𝑡 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·o 𝑟) +o 𝑠) = 𝐵)))
5554eu4 2698 . 2 (∃!𝑧𝑥 ∈ On ∃𝑦𝐴 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵) ↔ (∃𝑧𝑥 ∈ On ∃𝑦𝐴 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵) ∧ ∀𝑧𝑡((∃𝑥 ∈ On ∃𝑦𝐴 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵) ∧ ∃𝑟 ∈ On ∃𝑠𝐴 (𝑡 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·o 𝑟) +o 𝑠) = 𝐵)) → 𝑧 = 𝑡)))
5612, 38, 55sylanbrc 585 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → ∃!𝑧𝑥 ∈ On ∃𝑦𝐴 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083  wal 1534   = wceq 1536  wex 1779  wcel 2113  ∃!weu 2652  wne 3019  wrex 3142  c0 4294  cop 4576  Oncon0 6194  (class class class)co 7159   +o coa 8102   ·o comu 8103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-omul 8110
This theorem is referenced by:  oeeui  8231  omxpenlem  8621
  Copyright terms: Public domain W3C validator