MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omeulem2 Structured version   Visualization version   GIF version

Theorem omeulem2 8211
Description: Lemma for omeu 8213: uniqueness part. (Contributed by Mario Carneiro, 28-Feb-2013.) (Revised by Mario Carneiro, 29-May-2015.)
Assertion
Ref Expression
omeulem2 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → ((𝐵𝐷 ∨ (𝐵 = 𝐷𝐶𝐸)) → ((𝐴 ·o 𝐵) +o 𝐶) ∈ ((𝐴 ·o 𝐷) +o 𝐸)))

Proof of Theorem omeulem2
StepHypRef Expression
1 simp3l 1197 . . . . . 6 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → 𝐷 ∈ On)
2 eloni 6203 . . . . . 6 (𝐷 ∈ On → Ord 𝐷)
3 ordsucss 7535 . . . . . 6 (Ord 𝐷 → (𝐵𝐷 → suc 𝐵𝐷))
41, 2, 33syl 18 . . . . 5 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → (𝐵𝐷 → suc 𝐵𝐷))
5 simp2l 1195 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → 𝐵 ∈ On)
6 suceloni 7530 . . . . . . 7 (𝐵 ∈ On → suc 𝐵 ∈ On)
75, 6syl 17 . . . . . 6 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → suc 𝐵 ∈ On)
8 simp1l 1193 . . . . . 6 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → 𝐴 ∈ On)
9 simp1r 1194 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → 𝐴 ≠ ∅)
10 on0eln0 6248 . . . . . . . 8 (𝐴 ∈ On → (∅ ∈ 𝐴𝐴 ≠ ∅))
118, 10syl 17 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → (∅ ∈ 𝐴𝐴 ≠ ∅))
129, 11mpbird 259 . . . . . 6 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → ∅ ∈ 𝐴)
13 omword 8198 . . . . . 6 (((suc 𝐵 ∈ On ∧ 𝐷 ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → (suc 𝐵𝐷 ↔ (𝐴 ·o suc 𝐵) ⊆ (𝐴 ·o 𝐷)))
147, 1, 8, 12, 13syl31anc 1369 . . . . 5 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → (suc 𝐵𝐷 ↔ (𝐴 ·o suc 𝐵) ⊆ (𝐴 ·o 𝐷)))
154, 14sylibd 241 . . . 4 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → (𝐵𝐷 → (𝐴 ·o suc 𝐵) ⊆ (𝐴 ·o 𝐷)))
16 omcl 8163 . . . . . 6 ((𝐴 ∈ On ∧ 𝐷 ∈ On) → (𝐴 ·o 𝐷) ∈ On)
178, 1, 16syl2anc 586 . . . . 5 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → (𝐴 ·o 𝐷) ∈ On)
18 simp3r 1198 . . . . . 6 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → 𝐸𝐴)
19 onelon 6218 . . . . . 6 ((𝐴 ∈ On ∧ 𝐸𝐴) → 𝐸 ∈ On)
208, 18, 19syl2anc 586 . . . . 5 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → 𝐸 ∈ On)
21 oaword1 8180 . . . . . 6 (((𝐴 ·o 𝐷) ∈ On ∧ 𝐸 ∈ On) → (𝐴 ·o 𝐷) ⊆ ((𝐴 ·o 𝐷) +o 𝐸))
22 sstr 3977 . . . . . . 7 (((𝐴 ·o suc 𝐵) ⊆ (𝐴 ·o 𝐷) ∧ (𝐴 ·o 𝐷) ⊆ ((𝐴 ·o 𝐷) +o 𝐸)) → (𝐴 ·o suc 𝐵) ⊆ ((𝐴 ·o 𝐷) +o 𝐸))
2322expcom 416 . . . . . 6 ((𝐴 ·o 𝐷) ⊆ ((𝐴 ·o 𝐷) +o 𝐸) → ((𝐴 ·o suc 𝐵) ⊆ (𝐴 ·o 𝐷) → (𝐴 ·o suc 𝐵) ⊆ ((𝐴 ·o 𝐷) +o 𝐸)))
2421, 23syl 17 . . . . 5 (((𝐴 ·o 𝐷) ∈ On ∧ 𝐸 ∈ On) → ((𝐴 ·o suc 𝐵) ⊆ (𝐴 ·o 𝐷) → (𝐴 ·o suc 𝐵) ⊆ ((𝐴 ·o 𝐷) +o 𝐸)))
2517, 20, 24syl2anc 586 . . . 4 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → ((𝐴 ·o suc 𝐵) ⊆ (𝐴 ·o 𝐷) → (𝐴 ·o suc 𝐵) ⊆ ((𝐴 ·o 𝐷) +o 𝐸)))
2615, 25syld 47 . . 3 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → (𝐵𝐷 → (𝐴 ·o suc 𝐵) ⊆ ((𝐴 ·o 𝐷) +o 𝐸)))
27 simp2r 1196 . . . . . 6 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → 𝐶𝐴)
28 onelon 6218 . . . . . 6 ((𝐴 ∈ On ∧ 𝐶𝐴) → 𝐶 ∈ On)
298, 27, 28syl2anc 586 . . . . 5 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → 𝐶 ∈ On)
30 omcl 8163 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) ∈ On)
318, 5, 30syl2anc 586 . . . . 5 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → (𝐴 ·o 𝐵) ∈ On)
32 oaord 8175 . . . . . 6 ((𝐶 ∈ On ∧ 𝐴 ∈ On ∧ (𝐴 ·o 𝐵) ∈ On) → (𝐶𝐴 ↔ ((𝐴 ·o 𝐵) +o 𝐶) ∈ ((𝐴 ·o 𝐵) +o 𝐴)))
3332biimpa 479 . . . . 5 (((𝐶 ∈ On ∧ 𝐴 ∈ On ∧ (𝐴 ·o 𝐵) ∈ On) ∧ 𝐶𝐴) → ((𝐴 ·o 𝐵) +o 𝐶) ∈ ((𝐴 ·o 𝐵) +o 𝐴))
3429, 8, 31, 27, 33syl31anc 1369 . . . 4 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → ((𝐴 ·o 𝐵) +o 𝐶) ∈ ((𝐴 ·o 𝐵) +o 𝐴))
35 omsuc 8153 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o suc 𝐵) = ((𝐴 ·o 𝐵) +o 𝐴))
368, 5, 35syl2anc 586 . . . 4 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → (𝐴 ·o suc 𝐵) = ((𝐴 ·o 𝐵) +o 𝐴))
3734, 36eleqtrrd 2918 . . 3 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → ((𝐴 ·o 𝐵) +o 𝐶) ∈ (𝐴 ·o suc 𝐵))
38 ssel 3963 . . 3 ((𝐴 ·o suc 𝐵) ⊆ ((𝐴 ·o 𝐷) +o 𝐸) → (((𝐴 ·o 𝐵) +o 𝐶) ∈ (𝐴 ·o suc 𝐵) → ((𝐴 ·o 𝐵) +o 𝐶) ∈ ((𝐴 ·o 𝐷) +o 𝐸)))
3926, 37, 38syl6ci 71 . 2 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → (𝐵𝐷 → ((𝐴 ·o 𝐵) +o 𝐶) ∈ ((𝐴 ·o 𝐷) +o 𝐸)))
40 simpr 487 . . . . 5 ((𝐵 = 𝐷𝐶𝐸) → 𝐶𝐸)
41 oaord 8175 . . . . 5 ((𝐶 ∈ On ∧ 𝐸 ∈ On ∧ (𝐴 ·o 𝐵) ∈ On) → (𝐶𝐸 ↔ ((𝐴 ·o 𝐵) +o 𝐶) ∈ ((𝐴 ·o 𝐵) +o 𝐸)))
4240, 41syl5ib 246 . . . 4 ((𝐶 ∈ On ∧ 𝐸 ∈ On ∧ (𝐴 ·o 𝐵) ∈ On) → ((𝐵 = 𝐷𝐶𝐸) → ((𝐴 ·o 𝐵) +o 𝐶) ∈ ((𝐴 ·o 𝐵) +o 𝐸)))
43 oveq2 7166 . . . . . . 7 (𝐵 = 𝐷 → (𝐴 ·o 𝐵) = (𝐴 ·o 𝐷))
4443oveq1d 7173 . . . . . 6 (𝐵 = 𝐷 → ((𝐴 ·o 𝐵) +o 𝐸) = ((𝐴 ·o 𝐷) +o 𝐸))
4544adantr 483 . . . . 5 ((𝐵 = 𝐷𝐶𝐸) → ((𝐴 ·o 𝐵) +o 𝐸) = ((𝐴 ·o 𝐷) +o 𝐸))
4645eleq2d 2900 . . . 4 ((𝐵 = 𝐷𝐶𝐸) → (((𝐴 ·o 𝐵) +o 𝐶) ∈ ((𝐴 ·o 𝐵) +o 𝐸) ↔ ((𝐴 ·o 𝐵) +o 𝐶) ∈ ((𝐴 ·o 𝐷) +o 𝐸)))
4742, 46mpbidi 243 . . 3 ((𝐶 ∈ On ∧ 𝐸 ∈ On ∧ (𝐴 ·o 𝐵) ∈ On) → ((𝐵 = 𝐷𝐶𝐸) → ((𝐴 ·o 𝐵) +o 𝐶) ∈ ((𝐴 ·o 𝐷) +o 𝐸)))
4829, 20, 31, 47syl3anc 1367 . 2 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → ((𝐵 = 𝐷𝐶𝐸) → ((𝐴 ·o 𝐵) +o 𝐶) ∈ ((𝐴 ·o 𝐷) +o 𝐸)))
4939, 48jaod 855 1 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → ((𝐵𝐷 ∨ (𝐵 = 𝐷𝐶𝐸)) → ((𝐴 ·o 𝐵) +o 𝐶) ∈ ((𝐴 ·o 𝐷) +o 𝐸)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1537  wcel 2114  wne 3018  wss 3938  c0 4293  Ord word 6192  Oncon0 6193  suc csuc 6195  (class class class)co 7158   +o coa 8101   ·o comu 8102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-oadd 8108  df-omul 8109
This theorem is referenced by:  omopth2  8212
  Copyright terms: Public domain W3C validator